详细解读简单的lstm的实例

本文介绍了一位初学者使用Keras模仿addition_rnn.py创建的LSTM实例,虽然数据处理略有差异,导致准确性稍逊,但详细代码及注释贯穿全文。
摘要由CSDN通过智能技术生成


本文是初学keras这两天来,自己仿照addition_rnn.py,写的一个实例,数据处理稍微有些不同,但是准确性相比addition_rnn.py 差一点,下面直接贴代码,
解释和注释都在代码里边。

<span style="font-family: Arial, Helvetica, sans-serif;">#coding:utf-8</span>
from keras.models import  Sequential
from keras.layers.recurrent import LSTM
from utils import  log
from numpy import random
import numpy as np
from  keras.layers.core import RepeatVector, TimeDistributedDense, Activation

'''
先用lstm实现一个计算加法的keras版本, 根据addition_rnn.py改写
size: 500
10次: test_acu = 0.3050  base_acu= 0.3600
30次: rest_acu = 0.3300  base_acu= 0.4250
size: 50000
10次: test_acu: loss: 0.4749 - acc: 0.8502 - val_loss: 0.4601 - val_acc: 0.8539
      base_acu: loss: 0.3707 - acc: 0.9008 - val_loss: 0.3327 - val_acc: 0.9135
20次: test_acu: loss: 0.1536 - acc: 0.9505 - val_loss: 0.1314 - val_acc: 0.9584
      base_acu: loss: 0.0538 - acc: 0.9891 - val_loss: 0.0454 - val_acc: 0.9919
30次: test_acu: loss: 0.0671 - acc: 0.9809 - val_loss: 0.0728 - val_acc: 0.9766
      base_acu: loss: 0.0139 - acc: 0.9980 - val_loss: 0.0502 - val_acc: 0.9839
'''

log = log()
#defination the global variable
training_size = 50000
hidden_size = 128
batch_size = 128
layers = 1

maxlen = 7
single_digit = 3


def generate_data():
    log.info("generate the questions and answers")
    questions = []
    expected =
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>