卷积神经网络小结(Convolutional Neural Networks)

CNNs应用的最成功的一个例子:Yann LeCun(曾经是Hinton组的research associate)

http://yann.lecun.com/exdb/lenet/index.html

 

code project上的一个C++写的例子,有很详细的文档说明:

http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi

 

代码下载网站:

MATLAB:

http://www.mathworks.com/matlabcentral/fileexchange/24291-cnn-convolutional-neural-network-class

https://sites.google.com/site/chumerin/projects/mycnn

 

C++:

http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi

 

 

文章进阶:

【1】Gradient-Based Learning Applied to Document Recognition

Yann Lecun写的文章。算是这个方向很重要的文章。

【2】Notes on Convolutional Neural Network:2006

主要是公式推导。

【3】Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis:2003

对于结构把握比较好,如果要自己去编写代码,可以仔细看看这篇文章。

【4】3D Convolution Neural networks for Human Action Recognition:2012

以前的CNNs都是2D的,But this paper is for human action recognition, so one has to apply temporal dimension. So the author developed a noval model:3D convolution neural networks.(In 2D CNNs, 2D convolution neural networks is performed at the convolution layers to extract the feature from local neighbourhood on feature maps in the previous layer.)


原文地址:http://blog.csdn.net/yudingjun0611/article/details/8984337


卷积神经网络Convolutional Neural Networks,CNN)是一种强大的深度学习算法,主要用于图像识别和处理。CNN的结构图主要包括卷积层、激活函数、池化层和全连接层。 卷积层是CNN的核心组成部分,由多个卷积核组成。每个卷积核在图像上进行滑动操作,通过计算卷积操作得到新的特征图。卷积操作可以提取出图像的局部特征,并保留了空间结构信息。 在卷积层之后,激活函数(如ReLU)被应用于特征图中的每个元素,以引入非线性。激活函数可以增加网络的表达能力,并促使网络学习更复杂的特征。 池化层用于减少特征图的维度,它通过将特定区域内的特征值进行聚合,并选择最显著的特征进行保留。常用的池化操作包括最大池化和平均池化。池化层可以减少特征图的大小,从而降低参数数量,减小计算量。 最后,全连接层将池化层输出的特征图转换为向量形式,并连接到输出层。全连接层的作用是对特征进行分类或回归预测。它们通常由全连接神经元组成,每个神经元与上一层的所有神经元相连。 在CNN的结构图中,卷积层和池化层可以多次堆叠,以增加网络的深度。这种多层次的结构可以使网络学习到更高级别的抽象特征。此外,CNN还可以通过添加批量归一化、dropout等技术来提高网络的性能和泛化能力。 总之,CNN的结构图展示了卷积神经网络的层次组织和数据流动方式,有助于理解其工作原理和网络结构的设计。通过逐层堆叠不同的层,CNN可以有效地提取图像中的特征,并在分类、目标检测等任务中取得优秀的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值