Hinge loss function

1公式


Hinge loss损失函数l(y)主要用于SVM的参数w和b的训练中,其形式为:

(y)=max(0,1ty)

其中t表示1或-1的类别,y表示样本的实际位置,且有|y|>=1。
如果y分到正确的类,即与t同方向,那么l(y)=0,否则l(y)>0。

对于样本x,其y值为wb(w已经将原本的w和b合并成一个),那么l(y)对参数w的梯度为:

wi={txi0if ty<1otherwise

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值