高方差、低偏差对应过拟合。表示训练数据集和测试数据集上模型所表现出的泛化性能差别较大。
低方差、高偏差对应欠拟合。
方差是多个数据集训练出的多个模型间预测值的比较;偏差单个数据集中单个模型预测值与真实值之间的差异。
对一个学习算法除了通过实验估计其泛化性能,还需要更好的了解泛化能力的原因,偏差-方差分解时解释算法泛化性能的一种重要的工具。
对于测试样本x,令yD为x在数据集中的标记(可能存在噪声导致标记值和真实值不同),y为x的真实值,f(x;D)在训练集D上学得模型f在x上的输出。以回归任务为例:
学习算法的期望预测为:
就是所有预测值的平均值;
产生的方差的计算为:
方差就是表示在某测试数据集上的方差,都是测试数据集上的预测值之间的关系,与真实的值并没有关系
对于噪声定义为:
标记值与真实值差平方的期望。
偏差则定义成期望输出与真实标记的差别:
为了便于讨论,假设噪声的期望为0.通过简单的多项式展开与合并对算法的期望泛化误差进行分解:
偏差度量了学习算法的期望预测与真实结果的偏离程度,刻画描述了算法本身对数据的拟合能力,也就是训练数据的样本与训练出来的模型的匹配程度;方差度量了训练集的变化导致学习性能的变化,描述了数据扰动造成的影响;噪声则表示任何学习算法在泛化能力的下界,描述了学习问题本身的难度。偏差方差分解表示了泛化性能有三者决定。
模型越复杂,偏差就越小,而模型越简单,偏差就越大,方差和偏差是按下面的方式进行变化的:
当方差和偏差加起来最优的点,就是我们最佳的模型复杂度。
转载自:https://www.cnblogs.com/daguankele/p/6561419.html