回归-普通最小二乘法(OLS)解析式推导

导语

    上一篇文章中解释了最小二乘损失函数的由来,本篇将继续向下推导,即系数 W 的推导。

前置知识

    里面用到了几个常见的与矩阵相关的求导公式

XθX=XT

θTXθT=XT

θTXθ=X

    关于上述公式的证明,这里不再赘述,可以严格参考向量求导的公式进行推理

推导

    上篇文章中我们定义了损失函数为:

J(θ)=12i=1m(θTx(i)y(i))2

J(θ)=12(Xθy⃗ )T(Xθy⃗ )

X是样本矩阵, y⃗  是观测值列向量

    我们将上述 h(θ) 拆开,得到:

J(θ)=12(θTXTXθθTXTy⃗ y⃗ TXθ+y⃗ Ty⃗ )

    由于 h(θ) 是凸函数,若要 h(θ) 取得极小值,则将其对 θ 求导,得到:
θJ(θ)=12(XTXθ+XTXθ2XTy⃗ )=XTXθXTy⃗ 

θJ(θ)=0 ,解得:
θ=(XTX)1XTy⃗ 

    至此, θ 的解析式求出。在实践中, XTX 矩阵的逆通常并不好求,甚至根本不能求逆,一种办法是使用岭回归,加入 λI 来使其可逆,或者使用梯度下降的方法迭代求参,关于梯度下降将在下一篇文章中进行阐述。

### 最小二乘法回归系数计算公式及其数学推导 在线性回归分析中,最小二乘法是一种用于估计最佳拟合直线参数的技术。该技术旨在找到一条能够使观测点到这条线的距离平方和达到最小化的直线。 #### 一元线性回归中的最小二乘法 考虑一组数据 $(x_i, y_i)$ ,其中 $i = 1, 2,\ldots,n$ 。假设这些数据遵循如下关系: $$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$ 这里 $\beta_0$ 和 $\beta_1$ 是待估参数,$\epsilon_i$ 表示随机误差[^1]。 为了应用最小二乘准则来寻找最优的 $\beta_0$ 和 $\beta_1$ 参数值,定义残差平方和(RSS)函数为: $$S(\beta_0, \beta_1)=\sum_{i=1}^{n}(y_i-\beta_0-\beta_1 x_i)^2.$$ 目标是最小化上述 RSS 函数关于未知参数 $\beta_0$ 和 $\beta_1$ 的偏导数等于零时取得极小值的情况。即求解下面两个方程组: $$\frac{\partial S}{\partial \beta_0}= -2\sum(y_i-\beta_0-\beta_1 x_i)=0,$$ $$\frac{\partial S}{\partial \beta_1}= -2\sum(x_i)(y_i-\beta_0-\beta_1 x_i)=0.$$ 简化这两个方程式可以得出正规方程的形式,并进一步得到具体的解析解表达式: $$\hat{\beta}_1=\frac{n\sum xy-(\sum x)(\sum y)}{n\sum x^2-(\sum x)^2},$$ $$\hat{\beta}_0=\bar{y}-\hat{\beta}_1\bar{x}.$$ 此处 $\bar{x}$ 和 $\bar{y}$ 分别代表输入变量$x$ 和 输出变量 $y$ 的平均值[^2]。 #### 多元线性回归下的最小二乘法 当涉及到多个解释变量的情况下,则采用矩阵形式表示更加简洁明了。设设计矩阵 $X=[1,X]$ (第一列为全1向量),响应向量 $Y=(y_1,...,y_n)'$, 则有: $$ Y=X\beta+\varepsilon $$ 此时的目标依然是使得残差平方和最小,也就是要找寻满足条件的 $\beta$ 向量,使其对应的损失函数 L 达到最小值: $$L(\beta)=(Y-X\beta)'(Y-X\beta).$$ 通过对上式取导数并令其等于0可得正则方程: $$X'X\beta=X'Y.$$ 如果 $X'X$ 可逆的话,那么可以直接通过求逆的方式获得唯一解: $$\hat{\beta}=(X'X)^{-1}X'Y.$$ 然而,在某些情况下,由于共线性的存在或者其他原因可能导致 $X'X$ 不满秩而无法直接求逆;这时就需要采取其他措施比如岭回归等方法来进行处理[^3]。 ```python import numpy as np def ols(X, Y): """Ordinary Least Squares estimation using matrix operations.""" Xt = X.T beta_hat = np.linalg.inv(Xt @ X) @ Xt @ Y return beta_hat ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值