transformers5--t5模型中encoder与decoder内容不同解读

关于transformers整体结构的解答可以查看相应的解析:解析网站
本质上t5使用的是编码和解码的操作,transformers的网络结构如下:
transformers编解码过程图片首先需要理解这个transformer对应的结构图,比如我们要想通过输入我爱中国得到输出I love China,那么Inputs输入永远是我爱中国,而Outputs刚开始为+position encoding,接下来产生预测I了之后,继续将Outputs(shifted right)变为(起始符)+I+position encoding,然后产生预测love之后,继续将Outputs(shifted right)变为(起始符)+I+love+positional encoding,以此类推。
由此可见,Inputs的部分始终不变,Outputs(shifted right)部分在不断地变化,从而引起预测结果不断地改变。
此外这种encoder-decoder结构还引出了一种attention的变化,也就是说在t5模型之中,encoder部分的attention与decoder中第二个部分的attention结构一致,decoder attention中第一个部分的attention加入了mask掩码的内容,这与bert4keras中的代码保持一致。

查看transformers库之中的encoder和decoder部分内容的不同

仔细观察发现,t5selfattention和t5crossattention的区别在于t5crossattention之中多加入了两个参数
t5selfattention的内容

self_attention_outputs = self.layer[0](
    hidden_states,
    attention_mask=attention_mask,
    position_bias=position_bias,
    layer_head_mask=layer_head_mask,
    past_key_value=self_attn_past_key_value,
    use_cache=use_cache,
    output_attentions=output_attentions,
)

t5crossattention的内容

cross_attention_outputs = self.layer[1](
    hidden_states,
    key_value_states=encoder_hidden_states,
    attention_mask=encoder_attention_mask,
    position_bias=encoder_decoder_position_bias,
    layer_head_mask=cross_attn_layer_head_mask,
    past_key_value=cross_attn_past_key_value,
    query_length=query_length,
    use_cache=use_cache,
    output_attentions=output_attentions
由于T5模型比较复杂,其pytorch代码实现也比较复杂,下面是一个简单的T5模型的实现代码,仅供参考: ```python import torch import torch.nn as nn from transformers import T5Tokenizer class T5Model(nn.Module): def __init__(self, config): super(T5Model, self).__init__() self.tokenizer = T5Tokenizer.from_pretrained('t5-small') self.encoder = nn.Embedding(config.vocab_size, config.hidden_size) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.transformer_blocks = nn.ModuleList([ nn.TransformerEncoderLayer(config.hidden_size, config.num_heads, config.feedforward_dim, config.dropout) for _ in range(config.num_layers) ]) def forward(self, input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None): encoder_inputs = self.encoder(input_ids) decoder_inputs = self.encoder(decoder_input_ids) if decoder_input_ids is not None else encoder_inputs attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) decoder_attention_mask = decoder_attention_mask.unsqueeze(1).unsqueeze(2) if decoder_attention_mask is not None else attention_mask for transformer_block in self.transformer_blocks: encoder_inputs = transformer_block(encoder_inputs, attention_mask=attention_mask) decoder_inputs = transformer_block(decoder_inputs, attention_mask=decoder_attention_mask) logits = self.decoder(decoder_inputs) return logits def generate(self, input_text, max_length=50): input_ids = self.tokenizer.encode(input_text, return_tensors='pt') decoder_input_ids = torch.ones((1, 1), dtype=torch.long).fill_(self.tokenizer.pad_token_id) for _ in range(max_length): logits = self.forward(input_ids, decoder_input_ids=decoder_input_ids) next_token_id = torch.argmax(logits, dim=-1) if next_token_id == self.tokenizer.eos_token_id: break decoder_input_ids = torch.cat([decoder_input_ids, next_token_id.unsqueeze(1)], dim=-1) output_text = self.tokenizer.decode(decoder_input_ids.squeeze(), skip_special_tokens=True) return output_text ``` 其中,T5Model继承自nn.Module,重写了forward方法和generate方法。 在forward方法中,首先使用T5Tokenizer对输入的文本进行编码,得到input_ids和decoder_input_ids。然后使用nn.Embedding将词嵌入向量映射到隐藏向量空间中。接着,将attention_mask进行扩展,以适应Transformer的输入形状。最后,使用nn.TransformerEncoderLayer对输入的encoder_inputs和decoder_inputs进行多头自注意力和前馈神经网络操作,得到最后的输出logits。 在generate方法中,首先使用T5Tokenizer对输入的文本进行编码,得到input_ids。然后初始化decoder_input_ids为一个只包含pad_token_id的张量。接着,循环调用forward方法,使用torch.argmax获取下一个最有可能的token_id,当下一个token_id为eos_token_id时,跳出循环。最后,使用T5Tokenizer将decoder_input_ids解码为文本,并返回。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值