【每周一篇】推荐算法之威尔逊区间法

本文介绍了威尔逊区间法在推荐系统中的作用,讲解了二项分布、置信区间和小样本数据处理。通过计算好评率的置信区间并根据下限值进行排名,威尔逊法能有效评估推荐内容的可靠性。同时,博主讨论了时间因素、影响权重等在排名计算中的考虑,并提到了正态分布的常见性和中心极限定理的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单阐述一下自己的学习计划:
【每周一篇】更侧重于理论,希望尽量能够形成一个体系或者完整的脉络
当然,也不排除因为业务或者紧急需求,突然跳到某个领域的可能~
【每周代码】更侧重于代码实践,可能是fork一个优秀项目,分析核心代码和算法思路,也可能是自己实现一个小项目demo(如果是这个的话,可能会持续好几周都是同一个算法了hhhh)
因为具体工作的空闲时间不定,所以不能保证每周都能更新【一篇】和【代码】,但是尽量保证每周更新其中之一
仅以自勉~

参考的文章放在前面,主要是整理和归纳(因为自己的水平还没到可以原创的程度hhh)
会增加自己的解读或者补充

应用:推荐系统-威尔逊区间法

写这篇的原因是因为上一篇代码部分,reddit社区的评论排序部分使用了这个方法,因此对这个还挺感兴趣的,就去网上专门找了一下,把这个简单易用的方法全面的学习一下~

先做如下设定:
(1)每个用户的打分都是独立事件。
(2)用户只有两个选择,要么投喜欢’1’,要么投不喜欢’0’。
(3)如果总人数为n,其中喜欢的为k,那么喜欢的比例p就等于k/n。

这是一种统计分布,叫做"二项分布"(binomial distribution)(二项分布后面会补充一个文章)
理论上讲,p越大应该越好,但是n的不同,导致p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值