发散级数(中文维基百科)

发散级数(中文维基百科)

发散级数

(英语:Divergent Series)指(按柯西意义下)不收敛的级数。如级数 1 + 2 + 3 + 4 + ⋯ 1 + 2 + 3 + 4 + \cdots 1+2+3+4+ 1 − 1 + 1 − 1 + ⋯ {\displaystyle 1-1+1-1+\cdots } 11+11+ ,也就是说该级数的部分和序列没有一个有穷极限。
如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数

1 + 1 2 + 1 3 + 1 4 + ⋯ = ∑ n = 1 ∞ 1 n . {\displaystyle 1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+\cdots =\sum _{n=1}^{\infty }{\frac {1}{n}}.} 1+21+31+41+=n=1n1.

调和级数的发散性被中世纪数学家奥里斯姆所证明。

发散级数通常是灾难性的,基于它的任何证明都是不光彩的

N. H. Abel, letter to Holmboe, January 1826, 再版于他论文集的第二卷。

目录
1 可和法
2 历史
3 关于发散级数求和的可和法定理
4 可和法的基本性质
5 传统意义下的可和法
5.1 级数的和
5.2 绝对收敛
6 Nørlund平均
6.1 切萨罗可和法
7 阿贝尔型可和法
7.1 阿贝尔可和法
7.2 林德勒夫可和法
8 解析延拓
8.1 幂级数的解析延拓
8.2 欧拉可和法
8.3 狄利克雷级数的解析延拓
8.4 zeta函数的正则化
9 基于整函数的可和法
9.1 波莱尔可和法
9.2 Valiron可和法
10 矩可和法
10.1 波莱尔可和法
11 各类可和法
11.1 豪斯多夫变换
11.2 赫尔德可和法
11.3 Hutton可和法
11.4 英厄姆可和法
11.5 朗伯可和法
11.6 Le Roy可和法
11.7 米塔-列夫勒可和法
11.8 拉马努金可和法
11.9 黎曼可和法
11.10 里斯可和法
11.11 Vallée-Poussin可和法
12 参考文献
13 引用

请点这里:发散级数(中文维基百科)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值