三点区域生长算法

图像分割是一种重要的图像处理技术,而区域生长是图像分割技术的一种。区域生长的基本思想是将具有相似性的像素集合起来构成区域。首先对每个需要分割的区域找出一个种子像素作为生长的七点,然后将种子像素周围邻域中与种子有相同或相似性质的像素(根据事先确定的生长或相似准则来确定)合并到种子像素所在的区域中。而新的像素继续作为种子向四周生长,直到再没有满足条件的像素可以包括进来,一个区域就生长而成了。


种子区域生长(region seeds growing, RSG)算法在实践中关键的问题是种子的选取和相似区域判定准则的确定。种子的选择可以人工选择,也可以通过一些方法自动选取;灰度图的判定准则一般用灰度差值小于某个阈值来表示,不同的判定准则可能会产生不同的分割结果。


为了说明区域是如何生长的,本文从最简单的情况出发:使用二值图像;人工选取种子;判定准则为是否是前景像素。


区域生长实现的步骤如下:
1. 对图像顺序扫描!找到第1个还没有归属的像素, 设该像素为(x0, y0);
2. 以(x0, y0)为中心, 考虑(x0, y0)的8邻域像素(x, y)如果(x0, y0)满足生长准则, 将(x, y)与(x0, y0)合并(在同一区域内), 同时将(x, y)压入堆栈;
3. 从堆栈中取出一个像素, 把它当作(x0, y0)返回到步骤2;
4. 当堆栈为空时!返回到步骤1;
5. 重复步骤1 - 4直到图像中的每个点都有归属时。生长结束。

#include <iostream>
#include <stack>
#include <opencv2\opencv.hpp> 
using namespace std;
using namespace cv;
// 8 邻域
static Point connects[8] = { Point(-1, -1), Point(0, -1), Point(1, -1), Point(1, 0), Point(1, 1), Point(0, 1), Point(-1, 1), Point(-1, 0)}; 
int main()
{	// 原图	
	Mat src = imread("C://6.png", 0);	
	imshow("原图",src);
	// 结果图	
	Mat res = Mat::zeros(src.rows, src.cols, CV_8U);	
	// 用于标记是否遍历过某点	
	Mat flagMat;	
	res.copyTo(flagMat);	
	// 二值图像	
	Mat bin;	
	threshold(src, bin, 80, 255, CV_THRESH_BINARY); 
	// 初始3个种子点	
	stack<Point> seeds;	
	seeds.push(Point(0, 0));
	seeds.push(Point(186, 166));	
	seeds.push(Point(327, 43));	
	res.at<uchar>(0, 0) = 255;	
	res.at<uchar>(166, 186) = 255;
	res.at<uchar>(43, 327) = 255;
	while (!seeds.empty())	
	{		
		Point seed = seeds.top();	
		seeds.pop(); 		// 标记为已遍历过的点	
		flagMat.at<uchar>(seed.y, seed.x) = 1; 	
     // 遍历8邻域		
		for (size_t i = 0; i < 8; i++)	
		{		
			int tmpx = seed.x + connects[i].x;		
			int tmpy = seed.y + connects[i].y; 		
			if (tmpx < 0 || tmpy < 0 || tmpx >= src.cols || tmpy >= src.rows)
			continue;		
			// 前景点且没有被标记过的点		
			if (bin.at<uchar>(tmpy, tmpx) != 0 && flagMat.at<uchar>(tmpy, tmpx) == 0)		
			{		res.at<uchar>(tmpy, tmpx) = 255;  // 生长				
			       flagMat.at<uchar>(tmpy, tmpx) = 1; // 标记		
				   seeds.push(Point(tmpx, tmpy)); // 种子压栈		
			}		
		}
	} 
	imshow("三点区域生长算法效果图",res);
	imwrite("4.jpg", res);	
	waitKey(0);	
	return 1;
}


原图:


上面的代码通过人工选择了三个种子,它们在原图中的大致位置如下(红色十字中心):


区域生长的过程:


测试效果图如下:

在这里插入图片描述
在这里插入图片描述
大致的可以看见 瞳孔里面的 光斑消失不见了! 三点区域生长算法可以去除光斑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zqx951102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值