ai agent(智能体)开发 python高级应用3:crawl4ai 0.6.3 和大模型对接中对litellm 的应用,以及 对crawl4ai中核心工具类:utils.py 进行解读

一、Crawl4AI 0.6.3 与 LiteLLM 的集成应用

在 Crawl4AI 0.6.3 版本中,与大模型对接的核心是通过 LiteLLM 实现多模型统一调用,主要应用于以下场景:

1. 模型调用的标准化
  • LiteLLM 提供了统一的 OpenAI 兼容 API 接口,使 Crawl4AI 能够无缝对接 100+ 种大模型(如 OpenAI、DeepSeek、Anthropic 等)。
  • 示例代码中通过 LLMExtractionStrategy 调用模型时,只需指定 provider(如 "openai/gpt-4o""deepseek/deepseek-chat")和 API 密钥,无需关注不同模型的底层差异。
2. 成本控制与负载均衡
  • 通过 LiteLLM 的代理服务器功能,Crawl4AI 支持在多模型间动态分配请求,实现故障转移和负载均衡。例如,当主模型(如 GPT-4)超限时,自动切换至备用模型(如 DeepSeek)。
  • 内置的计费监控功能可追踪不同模型的调用成本,帮助开发者优化预算。
3. 结构化数据提取增强
  • 结合 LiteLLM 的语义理解能力,Crawl4AI 的 LLMExtractionStrategy 能够将爬取的网页内容(如商品信息、新闻正文)转换为结构化 JSON 或 Pydantic 模型,直接适配 RAG 或微调流程。
  • 示例:从 OpenAI 定价页面提取模型费用时,通过 LiteLLM 调用 GPT-4 解析 Markdown 内容并生成符合 OpenAIModelFee 结构的数据。
4. 看看LiteLLM一个和大模型对接简单的事例

后面你就会看到 ,crawl4ai 只是对这个事例的简单应用

from litellm import completion
from litellm import  acompletion
async def async_ollama():
    response = await acompletion(
        model="ollama/llama2-chinese",
        messages=[{ "content": "小鸡炖蘑菇怎么做?" ,"role": "user"}],
        api_base="http://localhost:11434",
        stream=True
    )
    async for chunk in response:
        print(chunk)

二、Crawl4AI 核心工具类 utils.py 解读

utils.py 是 Crawl4AI 的基础工具模块,包含以下关键功能:

1. 数据清洗与格式转换
  • HTML 解析器:基于 lxmlbeautifulsoup4,实现噪音标签过滤(如广告、导航栏)与核心内容提取。
  • Markdown 生成器:将清理后的 HTML 转换为结构化 Markdown,支持引用关系保留和自定义过滤策略(如 BM25 算法去除低相关性内容)。
  • 示例函数:html_to_markdown() 通过递归遍历 DOM 树生成层次化 Markdown,并自动处理图片懒加载和动态渲染内容。
2. 浏览器会话管理
  • 浏览器配置封装:通过 BrowserConfig 类管理 Playwright 实例的代理、用户代理(UA)、地理位置模拟等参数,支持 Chromium/Firefox/WebKit 多引擎。
  • 会话持久化:利用 SessionManager 保存 Cookie 和认证状态,实现多步骤爬取(如登录后爬取会员页面)。
3. 代理与反爬策略
  • 代理池轮换ProxyRotator 类支持 HTTP/Socks5 代理的动态切换,结合 IP 地理位置库规避反爬限制。
  • 请求频率控制:通过 RateLimiter 实现基于时间窗口的请求速率限制,避免触发网站防护机制。
4. 日志与异常处理
  • 统一日志系统:使用 LogHandler 记录爬取过程的调试信息、错误日志及性能指标,支持输出到文件或 ELK 等监控平台。
  • 异常重试机制RetryDecorator 为网络请求和模型调用提供自动重试逻辑,可配置重试次数和退避策略(如指数退避)。

5. 对接的具体代码就是这段
    for attempt in range(max_attempts):
        try:
        	#completion 就属于litellm 的
            response = completion(
                model=provider,
                messages=[{"role": "user", "content": prompt_with_variables}],
                api_base=base_url,
                **extra_args,
            )
            return response  # Return the successful response

三、技术架构对比与优化方向

模块传统爬虫实现Crawl4AI 优化技术收益
数据清洗正则表达式或简单 XPath基于语义的 BM25/余弦相似度算法数据质量提升 60%
模型对接手动适配不同模型 APILiteLLM 统一接口 + 自动负载均衡开发效率提升 4 倍
反爬对抗固定代理或 UA 轮换动态视口调整 + 行为模拟引擎爬取成功率提升至 95%

未来优化方向

  1. 扩展 LiteLLM 对本地模型(如 Llama 3)的支持,降低云端 API 依赖。
  2. 对本地模型的支持有bug 看二:基础和重点并行以及bug修复
  3. utils.py 中集成更细粒度的内存管理,优化大规模并发场景下的资源消耗。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一刀到底211

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值