矩阵教程之二:矩阵运算


这个教程的内容包括矩阵的加法、减法和乘法运算,以及矩阵的数乘和矩阵数除运算,正定矩阵

本教程涵盖的主题:

1、通过动手来学习

2、一次矩阵运算

3、矩阵加减法

4、矩阵乘法

5、矩阵的数乘运算和数除运算

6、正交矩阵

7、转置矩阵和逆矩阵的性质

8、行列式

9、本篇回顾

10、参考文献

1、通过做练习来学习

在第一部分我们向读者介绍了不同类型的矩阵,有向图,与马尔可夫链. 我们使用了大量的图示让读者有一个直观的印象. 接下来我们要进行的话题是矩阵运算. 正如前边所说的, 这里只涵盖一些基本的矩阵运算. 在这里我们使用通过练习来学习的方式,因此,你不要仅仅盯着公式不放,你必须要动手练习才行。

我们建议你拿出一叠草稿纸和一只铅笔完成下边的任务:

  • 先快速阅读一遍,不要跳过某些部分,如果在第一次不能完全理解也不必担心,看第一遍就像你在完成第一部分时一样,尝试抓住主要概念。这样做的目的是先让你有一个全局的印象,然后针对每一个概念去加深印象. 顺便说一句,这中教学方式与计算词条权重的方式是极其相似的,考虑全局的和局部的信息。
  • 如果你完成了本篇的学习,回过头来再仔细看一遍. 通过做练习加深印象.
  • 在完成本篇教程时如果你遇到了公式或者图示的矩阵计算尝试自己计算出结果,不要跳过某些部分
  • 如果你完成了,我们建议你自己出题给自己做,如果你愿意的话,使用报纸上商业版块或者体育版块的表格数据做练习.
  • 尝试解决回顾部分给出的练习题

现在让我们开始这段有趣的旅程吧。.

2、现在开始矩阵运算

矩阵的加减乘除的运算规则如下所示. 假定我们对矩阵A 和 B 运算得到矩阵 Z. 它需要满足的计算规则是

  • 加法Z = A + B; zij = aij + bij
  • 减法Z = A - B; zij = aij - bij
  • 乘法Z = A*B, if # columns in A = # rows in B; zij = ai1* b1j + ai2* b2j + ai3* b3j + ... aim* bnj

数乘矩阵和数除矩阵是很简单的.如果矩阵Z 是有矩阵 A 与数值 c做数乘得到的, 那么其元素之间的对应关系为 zij = c*aij. 与此类似, 矩阵 A 与实数 c的数除运算可以表述为zij = (1/c)*aij.

图1 给出了所有上述运算的示例. 我们一个一个看一下.

 Some matrix operations

Figure 1. 一些矩阵运算示例

3、矩阵的加减运算

矩阵的加减运算必须按照相同的次序进行.这意味着做加减法的两个矩阵必须有相同的维数,否则就不能进行加减法运算。

这个等式

zij = aij + bij

意思是 "对于在第 i行第j列的矩阵 A 的元素加上矩阵 B中第i行第j列的元素".如果我们对矩阵A和B的每一个元素都按照上述规则运算,我们就能得到一个和矩阵Z,如图 2所示.

Addition

Figure 2. 加法操作

减法运算也是基于类似的方式. 等式

zij = aij - bij

意思是 "对于在第 i行第j列的矩阵 A 的元素减去矩阵 B中第i行第j列的元素". 如果我们对矩阵A和B的每一个元素都按照上述规则运算,我们就能得到一个差矩阵Z. 见图 3.

Substraction

Figure 3. 矩阵减法

4、矩阵乘法运算

给定矩阵 A 和 B 有如下特征:  A的列数与 B的行数相等.那么这两个矩阵是顺应的, 且他们能够通过乘法运算得到一个新的矩阵Z.

公式

zij = ai1* b1j + ai2* b2j + ai3* b3j + ... aim* bnj

的意思是 "A的第i行与  B的第j列对应元素相乘然后累加".图 4 是上述公式的一个图示.

Multiplication

Figure 4. 矩阵乘法

矩阵乘法就是千变提到的这么回事. 关键在于我们做乘法的顺序. 理由在于我们需要把行的元素和列的元素一一对应相乘 . 因此 A*B 与 B*A 可以得到不同的结果. 我们说“可以得到”是因为存在这种特殊情况:乘法运算可交换(与次序无关).一个例子是对角矩阵的乘法,关于对角矩阵,更过详细信息见第一部分.

5、矩阵的数乘与数除运算

矩阵的数乘和数除运算的规则是很相似的. 就像我们将实数 x 乘以 1/c 与计算 x 除以 c结果相同一样.

如果我们把矩阵A的每一个元素都乘以数值 c 以构造矩阵 Z, 因而 zij = c*aij. 类似的如果我们把矩阵 A 用实数 c做除法,即有zij = (1/c)*aij. 公式

zij = c*aij

意思是把第 i 行第 j 列的元素乘以c, 公式

zij = 1/c*aij = aij/c

表示把第i行第j列的元素除以c. 图 5演示了这两种运算, 这里 c = 2.

Scalar multiplication and division

Figure 5. 矩阵的数乘运算和数除运算


图 6 演示了如何通过数乘单位阵得到一个纯量阵.在第三部分我们将会看到 从regular matrix中减去纯量阵是一个很重要的运算。

Scalar matrix

Figure 6. 数乘单位阵得到纯量阵

6、正交矩阵

A regular matrix (行列式不为0的矩阵) M与其转置相乘得到单位阵 I 时我们说矩阵M是正交矩阵; 如., M*MT = I. 正交矩阵有一些有趣的性质. 如果M 是正交矩阵:

  1. 正交矩阵的转置与其逆矩阵相等: MT = M-1.
  2. 正交矩阵与其转置相乘是可交换的: M*MT = MT*M.
  3. 正交矩阵的转置也是正交矩阵.
  4. 两个正交矩阵的乘积仍然是正交矩阵.
  5. 正交矩阵的行列式为 +/- 1. 而反过来不一定成立; 例如., 并非所有行列式为 +/- 1 的矩阵都是正交矩阵
  6. 正交矩阵任意一行或一列的所有元素平方和为1
  7. 正交矩阵的两个行向量或者列向量的点积为0.

反过来, 一个方阵 (具有相同的行数和列数的矩阵) 如果满足如下条件那么它就是一个正交矩阵:

  1. 每一行或列的元素的平方和为1.
  2. 任意两列或两行的点积为0.

正如我们所看到的,我们有很多方式验证一个矩阵是否是正交矩阵,只要看它是否具有上述的性质即可

7、转置矩阵与逆矩阵的性质

转置矩阵的如下性质可以直接观察到

(ABC)T =CTBTAT

(ABCT)T = (CT)TBTAT = CBTAT

同样逆矩阵的这些性质也可以直接观察到

(ABC)-1 =C-1B-1A-1

(ABC-1)-1 = (C-1)-1B-1A-1 = CB-1A-1

A-1A = AA-1 = I = 1

由于我们没有定义矩阵除法, 因此我们不能完成两个矩阵相除的操作. 然而, 我们可以通过对等式的两边乘以给定矩阵的逆矩阵来达到想要的结果 (2).

8、行列式

接下来我们将给出一个并不完备的定义, 行列式 (det) 可以视为一个从矩阵到一个数值的函数映射. 它的值可以是包括0在内的任何实数.  行列式不为0的矩阵都是可逆矩阵 (这意味着我们可以计算它的逆矩阵).如果矩阵行列式为0 (det = 0),那么这个矩阵就是不可逆矩阵. 

为了说明我们提及的是A的行列式而不是 A 矩阵,我们在 A的两侧各用一个竖线 ("|")标识这是一个行列式. 用数学符号描述的矩阵 A的行列式定义 如图 7 所示,图中 m = n = 2 , m = n = 3

Some determinants

Figure 7. 矩阵的行列式

图中的元素的第二个下标都是不同的, 条目的数量有 n! ,v 是第二下标的逆序数. 因此, 二阶矩阵的行列式有两个条目和1 个负号, 三阶矩阵有6个条目三个负号. 图 8给出了一个计算的示例.

Sample calculations

Figure 8. 行列式计算示例

还有其他的方法可以用来计算行列式(三角化, reduction methods,等). 对于较大的矩阵我们可以用一些软件来计算结果。.

如果矩阵的行列式非0,那么这就是一个 regular matrix.如果行列式为0, 那么这个矩阵就是奇异矩阵. 从regular matrix到奇异矩阵的变换问题属于到特征值问题. 特征值问题以及与之相关的领个重要概念:特征值与特征向量将在第三篇进行讲述

后一篇:  Matrix Tutorial 3: Eigenvalues and Eigenvectors
前一篇:  随机矩阵
9、本篇回顾
  1. 生成两个不同的二阶矩阵A和B,证明A*B与 B*A的结果不同。
  2. 给定一个二阶矩阵,其元素为; a11 = -18; a12 = 29 ; a21 = 30; a22 = 4. 计算矩阵的迹和行列式. 这个矩阵是正规阵还是奇异矩阵? 矩阵是否可逆?
  3. 计算图7中矩阵的转置,计算转置得到的矩阵的行列式,前述矩阵及其转置是正规矩阵还是奇异矩阵?是否有逆矩阵?
10、参考文献
  1. Graphical Exploratory Data Analysis; S.H.C du Toit, A.G.W. Steyn and R.H. Stumpf, Springer-Verlag (1986).
  2. Handbook of Applied Mathematics for Engineers and Scientists; Max Kurtz, McGraw Hill (1991).
ref:

译注:本文非直译,或有不准确之处,有疑问者可点击此处围观原文,不喜请勿拍砖,欢迎修改意见,谢谢合作!
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值