Vision Mamba代码笔记

1 论文回顾

  • 基本思路

论文解读见:

《VideoMamba》论文笔记_video mamba-CSDN博客

  • 注意

  1. Vision Mamba和VIT的输入和输出的shape的形状是相同的(VIT基于Transformer的Encoder设计,输入经过多层MHA和MLP计算,输入和输出的形状相同,Mamba的SSM架构就可以做到输入与输出token的个数以及每个token的维度相同,自然也可以做到整个输入和输出的形状相同,再者Vision Mamba的设计参照VIT的结构,自然也要注意输入与输出形状相同。两者的输入流经过各自对应的Encoder之后都具备了上下文信息,其效果相同,效率上基于Mamba的模型会更胜一筹。
  2. 正如1所说,Vision Mamba的设计参照VIT,这两个工作的流程是相同的,这里主要指的是图片打patch 再concat上class token再加上Position Embedding这个流程,两个模型唯一不同的地方就是Emcoder部分的不同,VIT使用的是Transformer的Encoder,Vim使用的是Mamba的Encoder,二者都是用于token间信息交互,上下文建模的

2 环境配置

按照官方readme.md配置,如果有问题照着下面这个链接改

vision mamba 运行训练记录,解决bimamba_type错误-CSDN博客

值得说明的一点是,如果你之前在跑其他的mamba,环境拿过来是不能直接直接用的,因为标准的Mamba类是没有bimamba_type这个参数的,

所以,需要去Vim代码官网去找到mamba-1p1p1包,下载之后放自己项目里

事实上Vision Mamba重写了这个Mamba类,可以看到里边是由bimamba_type这个参数的(这其实也是Vision Mamba的主要贡献),执行如下代码

cp -rf mamba-1p1p1/mamba_ssm /home/liyhc/anaconda3/envs/mamba/lib/python3.10/site-packages
#后边是系统的mamba的安装路径,自己照着自己环境mamba的安装路径进行修改

3 代码笔记

3.1 代码链接

官方代码链接

Vim/vim/models_mamba.py at main · hustvl/Vim (github.com)

我手敲的带中文注释的链接

Johnny-Haytham/Vim: Vim with chinese notation (github.com)

3.2 Module

3.2.1 PatchEmbed

     

class PatchEmbed(nn.Module):
    def __init__(self, img_size=224,patch_size=16,stride=16,in_channels=3,embed_dim=768,norm_layer=None,flatten=True):
        super(PatchEmbed, self).__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)#将img_size和patch_size化成元组的形式
        self.img_size = img_size
        self.patch_size = patch_size
        #一个patch形成一个grid(网格),这里记录网格的形状
        self.grid_size = ((img_size[0] - patch_size[0]) // stride + 1 , (img_size[1] - patch_size[1]) // stride + 1)
        self.num_patches = self.grid_size[0] * self.grid_size[1]#总共的patch个数
        self.flatten = flatten
        #打patch的操作,实际为卷积的操作(为了不重复卷积,步长的大小理论上因该等于卷积核的大小)
        self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()#nn.Identity的输入等于输出,通常作为占位层使用

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1],\
            f"Input img size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})"
        x = self.proj(x)#B,C,H,W——>B,embed_dim,grid_size,grid_size
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)#B,embed_dim,grid_size,grid_size——>B,embed_dim,grid_size*grid_size——>B,grid_size*grid_size,embed_dim
        x = self.norm(x)
        return x

3.2.2 Vim Encoder Block

class Block(nn.Module):
    def __init__(
            self, dim, mixer_cls,
            norm_cls = nn.LayerNorm,
            fused_add_norm=False,residual_in_fp32=False,drop_path=0.
    ):
        super(Block, self).__init__()
        self.residual_in_fp32 = residual_in_fp32
        self.fused_add_norm = fused_add_norm

        self.mixer = mixer_cls(dim)#这其实是Mamba的部分固定参数的调用
        self.norm = norm_cls(dim)

        self.drop_path = DropPath(drop_path)

        if self.fused_add_norm:
            assert RMSNorm is not None,"RMSNorm import Fails"
            assert isinstance(
                self.norm, (nn.LayerNorm, RMSNorm)
            ),"Only LayerNorm and RMSNorm are supported for fused_add_norm"

    def forward(self,
                hidden_states:  Tensor,#上一个时间状态的输出,也就是ht-1
                residual: Optional[Tensor]=None,
                inference_params = None):
        if not self.fused_add_norm:#如果fused_add_norm为False
            if residual is None:#如果残差为空,这个是if用于第一个block处理输入数据
                residual = hidden_states
            else:#如果残差不为空,这个if用于处理除了第一个block以外的所有block的操作
                residual = residual + self.drop_path(self.mixer(hidden_states))
                # 将residual的数据类型转化为self.norm.weight.dtype,将residual归一化后保存为hidden_states
            hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
            if self.residual_in_fp32:#如果指定self_residual的类型是float32的话
                residual = residual.to(torch.float32)

        else:#如果fused_add_norm不为False
            fused_add_norm_fn = rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn
            if residual is None:#如果残差为空,这个是if用于第一个block处理输入数据
                hidden_states,residual = fused_add_norm_fn(
                    hidden_states,
                    self.norm.weight,
                    self.norm.bias,
                    residual=residual,
                    prenorm=True,
                    residual_in_fp32=self.residual_in_fp32,
                    eps=self.norm.eps,
                    )
            else:#如果残差不为空,这个if用于处理除了第一个block以外的所有block的操作
                hidden_states,residual = fused_add_norm_fn(
                    self.drop_path(hidden_states),
                    self.norm.weight,
                    self.norm.bias,
                    residual=residual,
                    prenorm=True,
                    residual_in_fp32=self.residual_in_fp32,
                    eps=self.norm.eps,
                )
        hidden_states = self.mixer(hidden_states,inference_params=inference_params)
        return hidden_states, residual

def create_block(
        d_model,                                #token维度
        ssm_cfg=None,                           #ssm模型的配置文件
        norm_epsilon=1e-5,                      #
        drop_path=0.,
        rms_norm=False,
        residual_in_fp32=False,
        fused_add_norm=False,
        layer_idx=None,
        device=None,
        dtype=None,
        if_bimamba=False,                       #是否使用双向mamba扫描
        bimamba_type="none",
        if_devide_out=False,
        init_layer_scale=None,
):
    if if_bimamba:#如果使用双向mamba扫描
        bimamba_type = "v1"                     #这是一个模型的版本号
    if ssm_cfg is None:
        ssm_cfg = {}
    factory_kwargs = {"device": device, "dtype": dtype}
    mixer_cls = partial(                        #代表着VIM Encoder对class token的拼接方式,cls token可以拼接到不同位置(所有token前面,所有token中间,...或是随机位置)
        Mamba,
        layer_idx=layer_idx,
        bimamba_type=bimamba_type,
        if_devide_out=if_devide_out,
        init_layer_scale=init_layer_scale,
        **ssm_cfg,
        **factory_kwargs
    )
    norm_cls=partial(                           #对于class token的normalization函数
        nn.LayerNorm if not rms_norm else RMSNorm,eps=norm_epsilon,**factory_kwargs
    )                                           #eps用于避免归一化过程中分母为0的情况
    block =Block(
        d_model,
        mixer_cls,
        norm_cls=norm_cls,
        drop_path=drop_path,
        fused_add_norm=fused_add_norm,
        residual_in_fp32=residual_in_fp32,
    )
    block.layer_idx = layer_idx
    return block

3.3 Vision Mamba整体

class VisionMamba(nn.Module):
    def __init__(self,
                 img_size=224,
                 patch_size=16,
                 stride=16,
                 depth=24,                        #需要构造的block的个数
                 embed_dim=192,
                 channels=3,
                 num_classes=1000,                #这里用imagenet做分类任务所以有1000个类,也就代表了最后的mlp的输出层包含1000个节点
                 ssm_cfg=None,                    #ssm的配置文件
                 drop_rate=0.,                    #drop_rate是针对于dropout的频率(对某个节点进行失活的操作)
                 drop_path_rate=0.1,              #drop_path_rate是针对drop_path的频率(对某个层进行失活的操作)
                 norm_epsilon:float=1e-5,
                 rms_norm:bool=False,             #是否使用rms_norm这种方法
                 fused_add_norm=False,
                 residual_in_fp32=False,          #残差链接的时候是不是浮点型
                 device=None,
                 dtype=None,
                 pt_hw_seq_len=14,                #代表sequence的长度
                 if_bidirectional=False,
                 final_pool_type='none',          #最后池化层的类型
                 if_abs_pos_embed=False,          #在位置编码的时候是不是需要用绝对值编码(有两种位置编码方式:1、直接给出的绝对值位置编码 2、可学习的位置编码)
                 if_rope=False,                   #rope也是一种对positionembeding的特殊编码方式
                 if_rope_residual=False,          #对 residual的rope 旨在增加鲁棒性
                 flip_img_sequences_ratio=-1.,    #image_squence的反转概率
                 if_bimamba=False,
                 bimamba_type="none",             #表示使用的mamba的版本
                 if_cls_token=False,              #拼不拼clstoken
                 if_devide_out=False,
                 init_layer_scale=None,
                 use_double_cls_token=False,
                 use_middle_cls_token=False,
                 **kwargs):                       #为了保证模型的可扩展性所以加一个**kwargs
        factory_kwargs = {"device": device, "dtype": dtype}
        # add factory_kwargs into kwargs
        kwargs.update(factory_kwargs)
        super(VisionMamba,self).__init__()
        self.residual_in_fp32 = residual_in_fp32
        self.fused_add_norm = fused_add_norm
        self.if_bidirectional = if_bidirectional
        self.final_pool_type = final_pool_type
        self.if_abs_pos_embed = if_abs_pos_embed
        self.if_rope = if_rope
        self.if_rope_residual = if_rope_residual
        self.flip_img_sequences_ratio = flip_img_sequences_ratio
        self.if_cls_token = if_cls_token
        self.use_double_cls_token = use_double_cls_token            #这个拼接clstoken的方式是头拼一个尾拼一个
        self.use_middle_cls_token = use_middle_cls_token            #这个拼接clstoken的方式是中间拼一个
        self.num_tokens = 1 if if_cls_token else 0                  #表示拼了几个cls token进去?存疑

        # pretrain parameters
        self.num_classes = num_classes
        self.d_model = self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, stride=stride, in_channels=channels, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        if if_cls_token:                                            #如果使用cls token的话
            if use_double_cls_token:
                self.cls_token_head = nn.Parameter(torch.zeros(1, 1, self.embed_dim))#拼在token序列最前面的clstoken
                self.cls_token_tail = nn.Parameter(torch.zeros(1, 1, self.embed_dim))#拼在token序列最后面的clstoken
                self.num_tokens = 2                                 #代表了拼了几个cls token
            else:
                self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
                # self.num_tokens = 1

        if if_abs_pos_embed:                                         #如果使用给定的位置编码(给定绝对值)
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, self.embed_dim))
            self.pos_drop = nn.Dropout(p=drop_rate)

        #if if_rope:                                                  #Rope(Rotary Position Embedding)对于Position Embedding的翻转操作,(数据增强操作)
        #    half_head_dim = embed_dim // 2
        #    hw_seq_len = img_size // patch_size                      #高/宽方向的序列长度
        #    self.rope = VisionRotaryEmbeddingFast(
        #        dim=half_head_dim,
        #        pt_seq_len=pt_hw_seq_len,
        #        ft_seq_len=hw_seq_len
        #    )
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()             #这个是最终的分类头

        #drop path rate 随机失活一些东西,目的是让模型的鲁棒性更强,效果更好
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  #构建从start到end的等距张量,目的是为每层网络设置独立的drop_path_rate
        inter_dpr = [0.0] +dpr                                                   #第一层不需要dropout,所以要在最开始拼个0
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

        self.layers = nn.ModuleList(
            [
                create_block(#对VisionMamba的Encoder进行初始化的操作
                    embed_dim,
                    ssm_cfg=ssm_cfg,
                    norm_epsilon=norm_epsilon,
                    rms_norm=rms_norm,
                    residual_in_fp32=residual_in_fp32,
                    fused_add_norm=fused_add_norm,
                    layer_idx=i,
                    if_bimamba=if_bimamba,
                    bimamba_type=bimamba_type,
                    drop_path=inter_dpr[i],
                    if_devide_out=if_devide_out,
                    init_layer_scale=init_layer_scale,
                    **factory_kwargs
                )
                for i in range(depth)
            ]
        )

        self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)(embed_dim, eps=norm_epsilon,**factory_kwargs)
        #trunc_normal_函数是一个用于对张量进行截断正态分布初始化的函数。它通常用于初始化神经网络的权重或偏置。
        if if_abs_pos_embed:
            trunc_normal_(self.pos_embed, std=.02)

        if if_cls_token:
            if use_double_cls_token:
                trunc_normal_(self.cls_token_head, std=.02)
                trunc_normal_(self.cls_token_tail, std=.02)
            else:
                trunc_normal_(self.cls_token, std=.02)

        #定义前向特征传播的方法
    def forward_features(self, x,inference_params=None,
                         if_random_cls_token_position=False,
                         if_random_token_rank=False):
        x = self.patch_embed(x)
        B, M, _ = x.shape

        if self.if_cls_token:
            if self.use_double_cls_token:                   #在序列前后拼double_cls_token
                cls_token_head = self.cls_token_head.expand(B, -1, -1)#expend 是共享内存的拓展 并不是创建新的张量
                cls_token_tail = self.cls_token_tail.expand(B, -1, -1)

                token_position = [0, M+1]
                x = torch.cat((cls_token_head, x, cls_token_tail), dim=1)
                M = x.shape[1]

            else:
                if self.use_middle_cls_token:
                    cls_token = self.cls_token.expand(B, -1, -1)
                    token_position =M//2
                    x = torch.cat((x[:,:token_position,:], cls_token, x[:,token_position:,:]), dim=1)
                elif if_random_cls_token_position:
                    cls_token = self.cls_token.expand(B, -1, -1)
                    token_position = random.randint(0,M)
                    x = torch.cat((x[:,:token_position,:], cls_token, x[:,token_position:,:]), dim=1)
                    print("token_position: ", token_position)
                else:
                    cls_token = self.cls_token.expand(B, -1, -1)
                    token_position = 0
                    x = torch.cat((cls_token, x), dim=1)
                M = x.shape[1]

        if self.if_abs_pos_embed:
            x= x+self.pos_embed
            x = self.pos_drop(x)

        if if_random_token_rank:#是否要把所有的token序列打乱,如果打乱了的话自然要更新存储clstoken的位置

            #生成随机 shuffle索引
            shuffle_indices = torch.randperm(M)#torch.randperm(M)是用于生成一个从0到M-1的随机排列的整数序列的函数。

            if isinstance(token_position, list):
                print("original value: ",x[0, token_position[0],0], x[0, token_position[1],0])
            else:
                print("original value: ",x[0, token_position,0])
            print("original token_position: ", token_position)

            #执行shuffle
            x = x[:, shuffle_indices, :]

            if isinstance(token_position, list):
                new_token_position = [torch.where(shuffle_indices == token_position[i])[0].item() for i in range(len(token_position))]
                token_position = new_token_position
            else:
                token_position = torch.where(shuffle_indices == token_position)[0].item()

            if isinstance(token_position, list):
                print("new value: ", x[0, token_position[0],0], x[0, token_position[1],0])
            else:
                print("new value: ", x[0, token_position, 0])
            print("new token_position: ", token_position)

        if_flip_img_suquences = False
        if self.flip_img_sequences_ratio > 0 and (self.flip_img_sequences_ratio - random.random()) >1e-5:
            x=x.flip([1])#会创建一个与张量 x 的形状相同的新张量,其中第一个维度的元素被翻转。翻转是指将第一个维度中的元素按相反的顺序重新排列。
            if_flip_img_suquences = True

        #mamba的整体部分
        residual = None
        hidden_states = x
        if not self.if_bidirectional:#只使用单向扫描(所以单向扫描就既可以选择正向单向扫描进行rope,也可以选择反向单项扫描进行rope)
            for layer in self.layers:

                if if_flip_img_suquences and self.if_rope:#反转序列并使用加强版的position Embedding
                    hidden_states = hidden_states.flip([1])
                    if residual is not None:
                        residual = residual.flip([1])

                #rope about
                if self.if_rope:
                    hidden_states = self.rope(hidden_states)
                    if residual is not None and self.if_rope_residuals:
                        residual = self.rope(residual)

                if if_flip_img_suquences and self.if_rope:#这里并不是跟上上段代码重复,而是filp了之后要再反转过来
                    hidden_states = hidden_states.flip([1])
                    if residual is not None:
                        residual = residual.flip([1])

                hidden_states, residual = layer(
                    hidden_states, residual, inference_params=inference_params,
                )

        else:#如果采用双向扫描
            for i in range(len(self.layers)//2):
                if self.if_rope:
                    hidden_states = self.rope(hidden_states)
                    if residual is not None and self.if_rope_residuals:
                        residual = self.rope(residual)

                hidden_states_f, residual_f = self.layers[i * 2](
                    hidden_states, residual, inference_params=inference_params
                )
                hidden_state_b, residual_b = self.layers[i * 2 + 1](
                    hidden_states.flip([1]),None if residual is None else residual.flip([1]),inference_params=inference_params
                )
                hidden_states = hidden_states_f + hidden_state_b.flip([1])
                residual = residual_f + residual_b.flip([1])

        if not self.fused_add_norm:#如果不使用fused_add_norm
            if residual is None:#如果残差为空
                residual = hidden_states
            else:#如果残差不为空
                residual = residual + self.drop_path(hidden_states)
            hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
        else:
            fused_add_norm_fn = rms_norm_fn if isinstance(self.norm_f,RMSNorm) else layer_norm_fn
            hidden_states = fused_add_norm_fn(
                self.drop_path(hidden_states),
                self.norm_f.weight,
                self.norm_f.bias,
                eps=self.norm_f.eps,
                residual=residual,
                prenorm=False,
                residual_in_fp32=self.residual_in_fp32,
            )

        # return only cls token if it exists
        if self.if_cls_token:
            if self.use_double_cls_token:
                return (hidden_states[:,token_position[0],:] + hidden_states[:,token_position[1],:]) / 2
            else:
                if self.use_middle_cls_token:
                    return hidden_states[:,token_position,:]
                elif if_random_cls_token_position:
                    return hidden_states[:,token_position,:]
                else:
                    return hidden_states[:,token_position,:]

        if self.final_pool_type == 'none':
            return hidden_states[:,-1,:]#这个切片是为了之后的mlp所做出的妥协
        elif self.final_pool_type == 'mean':
            return hidden_states.mean(dim=1)
        elif self.final_pool_type == 'max':
            return hidden_states
        elif self.final_pool_type == 'all':
            return hidden_states
        else:
            raise NotImplementedError

    def forward(self,x,return_features=False,inference_params=None,if_random_cls_token_position=False,if_random_token_rank=False):
        x = self.forward_features(x,inference_params,if_random_cls_token_position = if_random_cls_token_position,if_random_token_rank = if_random_token_rank)
        if return_features:
            return x
        x = self.head(x)
        if self.final_pool_type == 'max':
            x = x.max(dim=1)[0]
        return x

3.4 测试

def test():
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model = VisionMamba(
        patch_size=16,
        embed_dim=192,
        depth=24,
        rms_norm=True,
        residual_in_fp32=True,
        fused_add_norm=True,
        final_pool_type='mean',
        if_abs_pos_embed=True,
        if_rope=False,
        if_rope_residual=False,
        bimamba_type="V2",
        if_cls_token=True,
        if_divide_out=True,
        use_double_cls_token=True
    ).to(device)

    x = torch.randn(size=(4,3,224,224)).to(device)
    preds = model(x)
    print(preds.shape)

if __name__ == '__main__':
    test()

3.5 输出

参考文献

下个风口?Mamba手推公式&代码手搓_哔哩哔哩_bilibili

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值