推荐一个可以回测股票、基金、可转债数据的网站,附教程

分享一个可以回测股票、基金、债券数据的网站,这个网站叫聚宽(joinquant),做投资量化的同学可能比较熟悉,这个网站涵盖了2005年至今的投资数据,包含股票、期货、基金、指数、债券等等,不仅有行情数据,还有交易统计数据,上市公司信息等,感觉找到宝藏了。

当然,对我来说,最重要的数据还是「可转债」。

测试了一下,获取数据很简单,很轻松就拿到了可转债的历史交易数据。

下面简单说明一下操作方法:

1、点击这个链接:https://www.joinquant.com/default/index/sdk#jq-sdk-apply申请试用数据:

申请试用页面

2、点击这个链接:https://www.joinquant.com/help/api/help#JQData:可转债数据拿到可转债的数据使用说明:

可转债数据使用说明

3、执行下面的python代码:

代码

4、得到结果:

程序运行结果

5、还有很多其他的可转债数据,可以任意结合,玩出更多花样。

数据字段

值得高兴的是,我的「三要素组合」可以拿到更多数据样本进行回测了,等我回测出结果再来给大家做进一步分享。

Python中编写一个简单的可转债双低策略的代码,通常需要结合pandas库进行数据处理,yfinance库获取股票数据,以及backtrader库进行。下面是一个简化的示例: ```python # 导入所需库 import pandas as pd from yahoofinancials import YahooFinancials from backtrader import cerebro, strategy, TimeFrame # 定义策略类 class DoubleLowStrategy(strategy.Strategy): def __init__(self): self.data_rsi = self.datas[0].rsi(14) # 使用RSI指标 self.data_low1 = self.datas[0].low[-60:] # 最近60天最低价 self.data_low2 = self.datas[0].low[-120:] # 最近120天最低价 def next(self): if self.data_low1[-1] < self.data_low2[-1]: # 如果最近60天比120天更低 if self.data_rsi[-1] > 30: # 而且RSI超过30,认为有反弹机会 self.buy() # 买入信号 # 获取可转债数据 yf = YahooFinancials('AAPL.PA') # 替换为你要试的可转债代码 data = yf.get_historical_price_data(start_date='2020-01-01', end_date='2022-12-31') # 将数据转换成backtrader兼容格式 df = pd.DataFrame(data['prices']) df['datetime'] = pd.to_datetime(df['date'], format='%Y-%m-%d') df.set_index('datetime', inplace=True) data_dict = {'Close': df['close'].values} # 创建引擎 cerebro = cerebro() cerebro.addstrategy(DoubleLowStrategy) # 添加数据到引擎 cerebro.adddata(data_dict, name='AAPL', timeframe=TimeFrame.Days) # 开始 cerebro.run() # 结果打印 print("总收益:", cerebro.broker.getvalue()) # 相关问题--
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

启四

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值