团队研究成果|基于时空多任务学习的节假日期间城市轨道交通短时进出站客流预测

文章信息

文章题目为《Spatial-Temporal Multi-Task Learning for Short-term Passenger Inflow and Outflow Prediction on Holidays in Urban Rail Transit 》,2025年发表在《Transportation》期刊。本文提出了一种面向城市轨道交通系统节假日短时进出站客流预测的时空多任务学习模型,实现轨道交通节假日客流预测。

摘要

随着客流量的快速增长,城市轨道交通在节假日期间时常出现严重拥挤,给安全管理与运营带来了巨大挑战。在节假日期间实现准确、实时的短时进出站客流预测,对于缓解客流拥堵、提升运营管理效率和资源调配能力具有重要意义。然而,节假日短时进出站客流预测是一项具有挑战性的任务,受到多种因素的影响,包括时间依赖性、空间依赖性、空间依赖关系的时间演化、进出站流之间的交互关系以及假期样本数量有限等问题。为应对上述挑战,本文提出了一种城市轨道交通系统节假日短时进出站客流预测的时空多任务学习模型(STMTL)。STMTL模型主要包括以下三个部分:1.多图通道注意力网络(MGCA):从车站间交互图中提取静态与动态空间依赖关系,并自适应融合多图特征;2.时间编码门控循环单元(TE-GRU):引入时间编码门机制,有效捕捉长期周期性变化以及假期引发的特殊波动;3.交叉注意力模块(CAB):建模节假日期间的复杂进出站流交互特征,促进进出站客流任务之间的时空特征共享。为了验证所提模型的有效性与鲁棒性,本文在中国南宁城市轨道交通系统的元旦假期期间采集的两个真实数据集上进行了实证研究。

引言

凭借其速度快、准点率高和舒适性强等优势,城市轨道交通已成为人们日常出行的主要方式。然而,随着客流量的迅猛增长,特别是在节假日期间,城市轨道交通普遍面临严重拥挤问题,给其安全管理与运营调度带来了巨大挑战。节假日期间实现准确且实时的短时进出站客流预测,可提前掌握客流分布与波动趋势,有助于缓解拥堵压力。有效的节假日短时客流预测不仅可以帮助交通运输服务提供者优化运营时刻表,提高客流调控效率,并提前预判客流高峰,做出合理决策;同时,也能为出行者提供城市轨道交通的拥堵信息,帮助其主动调整出行计划、交通方式及路径选择。然而,节假日短时进出站客流预测是一项复杂任务,主要受到以下因素的制约:

1.时间依赖性:城市轨道交通系统的客流具有显著的时间依赖特性。如图1所示,常规工作日的客流呈现明显的周期性趋势(图中黑色部分),但在假期期间则表现出不规则的剧烈波动(图中红色部分)。

2.空间依赖性:空间依赖性指的是城市轨道交通网络中各车站之间由拓扑结构与城市土地利用模式决定的静态关系。例如图2中的A站和B站虽不相邻甚至地理位置较远,但由于土地利用类型相似,其客流模式却高度相似。

3.空间依赖关系的时间演化:城市轨道交通的空间依赖关系并非静态不变,而是随着时间动态演化。例如,在图2所示的早高峰时段,通勤站C的乘客会前往其他车站,而在晚高峰时段,乘客则从其他车站返回该通勤站。

4.进出流之间的交互关系:客流的进出站客流之间存在密切联系,包括相关性与异质性。相关性体现在整体进出站客流量大致相等,且受到天气、节假日、特殊事件等外部因素及时间特征的共同影响,从而表现出类似的波动趋势。异质性则体现在进出站客流在时空分布上的差异性,例如在早高峰期间,通勤站C的进站客流远高于出站客流,而在晚高峰期间则相反。

5.假期样本数量有限:由于节假日在全年所占比例较小,且同一节假日每年仅出现一次,因此节假日的客流数据相比工作日更加稀缺。此外,许多城市的城市轨道交通运营历史相对较短,进一步导致可用于建模的节假日样本数量有限。

为应对上述问题,本文提出了一种面向节假日城市轨道交通系统短时进出站客流预测的时空多任务学习模型。该模型由三大核心模块组成:多图通道注意力网络(MGCA)、时间编码门控循环单元(TE-GRU)和交叉注意力模块(CAB),用于刻画节假日期间复杂的客流模式。本文的主要贡献总结如下:

(1) 提出了一种新颖的多任务学习架构STMTL,用于节假日城市轨道交通系统短时进出站客流预测任务,有效建模进出站客流之间的交互关系。

(2) 在空间建模方面,设计了多图通道注意力网络MGCA,同时提取静态与动态空间依赖关系,并通过多通道融合自适应整合空间表示。

(3) 在时间建模方面,提出时间编码门控循环单元TE-GRU,引入时间编码门以捕捉节假日期间的长期周期性变化与突发波动;同时设计交叉注意力模块CAB,有效捕捉节假日进出站客流间的交互。

(4) 基于南宁地铁系统两个连续年度的元旦客流数据开展实证研究,结果表明STMTL在节假日短时客流进出预测任务中表现出良好的准确性与鲁棒性。同时,实验验证了利用连续年份相同节假日数据进行模型训练的有效性——第一年数据帮助模型学习节假日客流规律与波动,第二年元旦前数据则辅助模型掌握跨年度客流规模的变化趋势。

问题定义

1.客流:将来自自动售检票系统(AFC)的原始数据按不同时间粒度(15分钟、30分钟)聚合为各站点的进出站客流时间序列。过去连续 T个时间间隔内的进出站客流序列记为:

2.站间交互图:城市轨道交通网络是一个典型的图结构,具有显著的拓扑信息,表示为。为了充分捕捉站点之间的空间依赖性,本文采用了静态和动态的站点交互图,包括:(1)物理邻接图,表示站点之间的物理邻接关系;(2)时间-距离图,表示站点之间基于时间和距离的关系;(3)相似性图,表示基于进出客流的站点相似性;(4)交叉相似性图,表示在节假日期间进出客流的交叉相似性。

3.时间编码:(1) 星期几:使用one-hot编码向量来表示第t个时间间隔对应的星期几,从而捕捉不同星期几客流变化的模式。(2) 一天中的时间:使用one-hot编码向量来表示第t个时间间隔对应的一天中的小时,从而捕捉一天中不同时间段客流变化的模式。(3) 节假日:与平常工作日和周末相比,节假日的客流呈现出更复杂的变化模式。因此,使用one-hot编码向量来指示第t个时间间隔是否为节假日,以便捕捉节假日客流的特征。最终,将所有时间编码进行拼接,表示为以便为模型提供全面的时间信息。

4.问题描述:给定客流数据、多图数据和时间编码数据,预测下一个时间步进出站客流:

模型

为了解决上述时间依赖、空间依赖、空间依赖的随时间演化、进出站客流的交互以及节假日样本不足等挑战,提出了模型——时空多任务学习(STMTL),用于节假日期间短时进出站客流预测。STMTL框架如图所示。考虑到节假日期间进出站客流的时空特征存在异质性,为进出站客流分别设计了相同但独立的时空依赖提取模块,包括MGCA和TE-GRU。首先,MGCA从站点间交互图中提取空间依赖关系,并自适应地整合多图特征。由于节假日样本有限,模型在有效学习节假日客流的时空特征时面临挑战。为了解决这一问题,本文提出了一种新的图卷积方法,利用交叉相似性图在进出站客流之间实现数据层信息共享,从而实现节假日样本的数据增强。接着,考虑到节假日客流相比平常日具有波动性和不规则性,TE-GRU被用来捕捉时间依赖,特别是在节假日特征中的时间编码,提取由节假日引起的独特波动。最后,节假日出行目的的多样化(如旅游、购物等)导致进出站客流增加,乘客流动性增加,并促使其之间的交互更加频繁。因此,本文使用CAB来全面捕捉节假日期间进出站客流的交互,促进特征层信息的共享。此外,为了减轻模型深度可能带来的问题,本文在两个组件中都采用了残差连接。

1.多图通道注意力网络(MGCA):本文提出了一种新颖的多图通道注意力网络,融合了静态图与动态图,能够全面提取空间依赖关系及其随时间的演化特征。MGCA由多图卷积网络与图通道注意力网络组成,其具体结构如上图 (c) 所示。该模块不仅增强了模型对多种空间关系的建模能力,也提升了对复杂空间动态变化的适应性。首先,MGCN利用谱域图卷积方法从多个站点交互图中提取空间依赖特征。对于进站客流,分别基于物理邻接图、时间距离图、相似性图和交叉相似性图构建多个图通道,实现对节假日客流空间特征的多层次刻画。其中,为应对节假日样本有限的问题,特别引入交叉相似性图以实现进出站客流间的数据层信息共享,从而实现节假日数据的增强。随后,为避免通道特征融合时信息冗余与有效特征的损失,本文在MGCN输出的多通道空间表示基础上,引入通道注意力机制,设计图通道注意力网络以实现通道特征的加权融合。最终得到的空间表示分别为进站客流的空间依赖特征与出站客流的空间依赖特征,两者通过结构相同的MGCA模块分别独立提取。上述设计有效提升了模型对节假日复杂空间关系建模的能力与数据利用效率。

2.时间编码门控循环单元(TE-GRU):除了空间依赖关系外,时间依赖同样是节假日客流预测中的关键因素。针对节假日客流所呈现出的周期性波动与不规则变化特征,本文提出了一种引入时间编码机制的门控循环单元——时间编码门控循环单元(TE-GRU)。传统GRU虽因其参数少、结构简洁被广泛应用于交通预测任务中,但由于其时间建模能力受到输入序列长度的限制,难以有效捕捉节假日之间跨年周期的长期依赖性,限制了其对节假日特殊波动模式的刻画能力。TE-GRU在GRU的基础上引入时间编码状态及其控制门,利用时间的one-hot编码表征节假日特征,从而增强对节假日长期周期性变化的建模能力。具体而言,TE-GRU首先以MGCA提取的空间表示作为输入,利用多层堆叠结构对进出站客流进行时间建模,分别得到进站客流的时序依赖表示与出站客流的时序依赖表示。通过引入时间编码机制,TE-GRU有效提升了模型对节假日客流中长期依赖关系与独特波动模式的刻画能力。

3.交叉注意力(CAB):在常规工作日,人们的出行目的相对单一且规律,主要集中于通勤上下班或上学,客流变化较为可预测。然而,节假日期间人们的出行目的更加多样,包括旅游、购物等活动,导致进出站客流量显著增加,出行行为更为活跃,进出站客流之间的交互关系也更加频繁和复杂。为建模节假日期间进出站客流之间的复杂交互关系,促进进出站客流在特征层面的共享,本文借鉴多任务学习(MTL)思想,提出交叉注意力模块(Cross-Attention Block, CAB)。具体而言,MGCA与TE-GRU分别提取了进出站客流的丰富时空特征表示,在此基础上,CAB以进站客流为例,通过线性变换生成查询(Q)、键(K)、值(V)向量,并利用缩放点积注意力机制计算进出站客流在不同车站之间的交互注意力,获取来自出站客流对进站预测有价值的共享特征表示。与Transformer中自注意力机制不同,交叉注意力中Q和K分别来源于不同的输入(即进出站客流),关注的是空间维度下不同车站之间的交互,而非时间维度上的依赖关系。最后,将进站客流的原始时空表示与交叉注意力表示相加融合,得到更全面的进站时空表示,进而与出站客流的最终表示一同输入全连接层,预测下一时刻的进出站客流。该方法有效增强了模型对节假日期间复杂时空交互关系的建模能力,提高了客流预测精度。

实验

本节将在两个真实数据集上验证STMTL模型的预测准确性与鲁棒性。

1.数据集:本研究所使用的数据集来源于中国南宁市城市轨道交通(URT)系统在元旦期间的自动售检票系统(AFC)数据。该数据集涵盖三个连续年度的元旦假期时段,分别为:2018年12月3日至2019年1月6日、2019年12月2日至2020年1月5日,以及2020年11月30日至2021年1月3日,共计15周,包含约1500万条原始AFC记录。

2.网络级预测结果比较:本文在两个数据集上,以15分钟和30分钟两种时间粒度对STMTL与各基线模型的预测性能进行了比较,结果如表2所示。STMTL在不同时间粒度下均表现出优越的假期短时进出站客流预测能力。同时,10分钟粒度下的MAE和RMSE明显小于30分钟粒度,WMAPE则相对较高,表明随着时间粒度的增大,客流波动幅度增加但波动比例减小。此外,2021年元旦的预测误差明显大于2020年,说明2021年假期客流波动更为剧烈。首先,传统统计方法HA的预测性能远低于其他模型,主要因其无法刻画假期客流的复杂时序波动,不适用于假期短时客流预测。其次,BPNN虽能建模非线性关系,但缺乏对时空依赖的刻画,表现仅优于HA。CNN通过卷积操作提取站间局部关系及时间动态,但其性能随时间粒度增加而下降,原因在于细粒度客流特征被弱化。LSTM与Transformer能更好地建模时序依赖,Transformer借助自注意力机制捕捉长期依赖,因此优于LSTM;而LSTM易受极值影响,RMSE较高。随后,ST-ResNet与ST-GCN建模了时空依赖,提升了预测准确性,但未考虑空间依赖的时变特性。DCRNN与Graph WaveNet引入扩散图卷积以刻画空间依赖的动态演化,预测性能更优,但未建模假期波动特性及进出站客流间的交互关系。相比之下,STMTL通过MGCA融合静态与虚拟图建模空间依赖,TEGRU捕捉假期引发的周期性与突发性波动,CAB全面建模进出站客流间的交互。实验结果表明,STMTL在各基线模型中表现最佳,能准确识别假期特殊波动与客流交互特性,并在不同时间粒度与两个数据集上均展现出强鲁棒性与优越的预测性能。

3.消融实验:空间依赖建模方面:1)去除MGCA:模型无法有效捕捉客流的空间依赖,预测性能明显下降;2)去除多图结构:模型表现不如完整的STMTL,说明通过多个站点交互图建模空间依赖及其时序演化能够增强模型预测能力;3)去除图通道注意力(GCA)并采用简单求和融合多图特征:导致特征冗余及有效信息丢失,预测性能下降。时间依赖建模方面:4)去除TEGRU:模型难以捕捉复杂的时间依赖关系,性能显著下降;5)TEGRU替换为普通GRU:预测效果不如原始模型,说明TEGRU的时间编码门能有效刻画节假日引发的长期周期性变化与突发波动。进出流交互建模与模型结构方面:6)去除CAB模块:无法捕捉假期中进出站客流的频繁交互关系,预测性能下降;7)去除残差连接:性能下降,说明残差机制有助于复杂模型的稳定训练与表达能力提升。数据规模与时间跨度方面:8)仅使用一年数据(且不含节假日):模型性能大幅下降,说明使用连续两年的数据有助于更充分地学习假期期间客流的时空特征。其中,第一年数据帮助模型学习假期客流的规律与波动,第二年临近元旦前的数据有助于模型理解不同年份间客流规模的变化趋势。综上,STMTL各模块在空间建模、时间建模、交互建模和结构设计等方面均起到关键作用,共同构成了其优越的预测性能。

4.单车站的预测结果:在节假日期间,不同类型的地铁站点(包括商业性车站、旅游景点车站、办公性车站)呈现出各自独特的客流特征。为验证STMTL在不同站点类型下的预测准确性与鲁棒性,我们对2021年元旦期间的预测结果进行了可视化与分析,涵盖多种站点类型,以进一步评估模型在实际复杂场景中的适应能力与表现稳定性。

朝阳广场站

动物园站

麻村站

结论

本研究以南宁城市轨道交通系统元旦假期的客流数据为例,提出了一种用于节假日期间短时进出站客流预测的时空多任务学习模型(STMTL)。本文创新性地提出了多图通道注意力机制(MGCA)用于提取空间依赖关系,并实现了进出站客流的数据层共享;同时引入时间编码门控循环单元(TE-GRU)以捕捉假期引起的独特波动。特别地,本研究从可解释性的角度对进出站客流的交互效果进行了可视化分析。主要结论如下:(1) 所提出的STMTL模型在提取时空依赖性及建模进出站客流间交互方面表现出显著优势;(2) 在与多种基准模型的预测性能对比中,STMTL取得了最优的预测效果,验证了其在城市轨道交通系统假期短时进出站客流预测中的准确性;(3) 在两个真实数据集上进行的消融实验结果表明,STMTL具有良好的鲁棒性,展现出其在实际应用中的潜力。

本研究围绕节假日期间短时进出站客流预测问题进行了深入探讨,提出的STMTL模型在预测性能方面取得了良好效果。然而,本研究仍存在部分未考虑的问题。首先,研究仅聚焦于元旦假期,未涵盖其他类型的节假日。后续研究将进一步探索不同节假日客流模式间的共性特征,以增强模型的泛化能力。其次,已有研究表明,城市轨道交通系统的客流波动与网络媒体热度、天气状况及地面交通条件等存在较强相关性。未来我们将更加关注多源异构数据的有效融合,以实现节假日及大型事件场景下的客流预测。


Attention

欢迎关注微信公众号《当交通遇上机器学习》!如果你和我一样是轨道交通、道路交通、城市规划相关领域的,也可以加微信:Dr_JinleiZhang,备注“进群”,加入交通大数据交流群!希望我们共同进步!

### 城市轨道交通短时客流预测的研究综述 #### 自适应图卷积网络的应用 基于自适应图卷积网络(AGCN)的城市轨道交通短时客流预测模型被广泛应用于实际场景中。通过利用智能IC卡产生的大量交易记录,此模型能够有效捕捉点间复杂的时空关联特性,实现对未来短时间内客流量的精准预估[^2]。 #### 时间序列分析技术 对于时间序列中的长短期依赖关系处理,LSTM(长短期记忆网络)作为一种特殊的递归神经网络结构表现出色。它不仅克服了传统RNN难以训练深层网络的问题,而且能很好地保留历史信息,在面对周期性强且存在突变情况下的客流数据时尤为适用。此外,GRU作为简化版的LSTM同样具备良好的性能表现,尤其适用于样本数量有限的情形下[^3]。 #### 综合性预测框架构建 为了提升整体预测准确性并增强系统的鲁棒性,通常会采用集成学习策略来融合不同类型的单体模型优势。例如随机森林(Random Forest),XGBoost等回归类算法擅长挖掘特征变量间的非线性映射规律;而ARIMA, SARIMAX这类经典统计学方法则善于描述平稳过程的发展趋势。两者相结合形成的混合模式可以在一定程度上弥补各自缺陷,达到更好的泛化能力。 ```python import pandas as pd from sklearn.ensemble import RandomForestRegressor from statsmodels.tsa.statespace.sarimax import SARIMAX # 构造随机森林模型实例 rf_model = RandomForestRegressor(n_estimators=100) # 训练SARIMAX模型 sarima_model = SARIMAX(endog=train_data['passenger_count'], order=(1, 1, 1), seasonal_order=(0, 1, 1, 7)) fitted_sarima = sarima_model.fit() def hybrid_predict(model_rf, model_sarima, X_test): pred_rf = model_rf.predict(X_test.drop('date', axis=1)) # 使用RF进行预测 forecast_sarima = model_sarima.forecast(steps=len(X_test)).values # 调用SARIMA未来值预测 final_prediction = (pred_rf + forecast_sarima)/2 # 平均两种模型的结果得到最终输出 return final_prediction ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

当交通遇上机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值