常见的几种Normalization 算法

神经网络中有各种归一化算法:Batch Normalization (BN)、Layer Normalization (LN)、Instance Normalization (IN)、Group Normalization (GN)

从公式看它们都差不多,如 (1) 所示:无非是减去均值,除以标准差,再施以线性映射。

这些归一化算法的主要区别在于操作的 feature map 维度不同。如何区分并记住它们,一直是件令人头疼的事。本文目的不是介绍各种归一化方式在理论层面的原理或应用场景,而是结合 pytorch 代码,介绍它们的具体操作,并给出一个方便记忆的类比。

1、Batch Normalization

 

# coding=utf8
import torch
from torch import nn

# track_running_stats=False,求当前 batch 真实平均值和标准差,
# 而不是更新全局平均值和标准差
# affine=False, 只做归一化,不乘以 gamma 加 beta(通过训练才能确定)
# num_features 为 feature map 的 channel 数目
# eps 设为 0,让官方代码和我们自己的代码结果尽量接近
bn = nn.BatchNorm2d(num_features=3, eps=0, affine=False, track_running_stats=False)

# 乘 10000 为了扩大数值,如果出现不一致,差别更明显
x = torch.rand(10, 3, 5, 5)*10000 
official_bn = bn(x)

# 把 channel 维度单独提出来,而把其它需要求均值和标准差的维度融合到一起
x1 = x.permute(1,0,2,3).view(3, -1)
 
mu = x1.mean(dim=1).view(1,3,1,1)
# unbiased=False, 求方差时不做无偏估计(除以 N-1 而不是 N),和原始论文一致
# 个人感觉无偏估计仅仅是数学上好看,实际应用中差别不大
std = x1.std(dim=1, unbiased=False).view(1,3,1,1)

my_bn = (x-mu)/std###这一块数值怎么变换的,好像还不是很理解

diff=(official_bn-my_bn).sum()
print('diff={}'.format(diff)) # 差别是 10-5 级的,证明和官方版本基本一致

2、Layer Normalization

BN 的一个缺点是需要较大的 batchsize 才能合理估训练数据的均值和方差,这导致内存很可能不够用,同时它也很难应用在训练数据长度不同的 RNN 模型上。Layer Normalization (LN) 的一个优势是不需要批训练,在单条数据内部就能归一化。

import torch
from torch import nn

x = torch.rand(10, 3, 5, 5)*10000

# normalization_shape 相当于告诉程序这本书有多少页,每页多少行多少列
# eps=0 排除干扰
# elementwise_affine=False 不作映射
# 这里的映射和 BN 以及下文的 IN 有区别,它是 elementwise 的 affine,
# 即 gamma 和 beta 不是 channel 维的向量,而是维度等于 normalized_shape 的矩阵
ln = nn.LayerNorm(normalized_shape=[3, 5, 5], eps=0, elementwise_affine=False)

official_ln = ln(x)

x1 = x.view(10, -1)
mu = x1.mean(dim=1).view(10, 1, 1, 1)
std = x1.std(dim=1,unbiased=False).view(10, 1, 1, 1)

my_ln = (x-mu)/std

diff = (my_ln-official_ln).sum()

print('diff={}'.format(diff)) # 差别和官方版本数量级在 1e-5

3、Instance Normalization

import torch
from torch import nn


x = torch.rand(10, 3, 5, 5) * 10000

# track_running_stats=False,求当前 batch 真实平均值和标准差,
# 而不是更新全局平均值和标准差
# affine=False, 只做归一化,不乘以 gamma 加 beta(通过训练才能确定)
# num_features 为 feature map 的 channel 数目
# eps 设为 0,让官方代码和我们自己的代码结果尽量接近
In = nn.InstanceNorm2d(num_features=3, eps=0, affine=False, track_running_stats=False)

official_in = In(x)

x1 = x.view(30, -1)
mu = x1.mean(dim=1).view(10, 3, 1, 1)
std = x1.std(dim=1, unbiased=False).view(10, 3, 1, 1)

my_in = (x-mu)/std

diff = (my_in-official_in).sum()
print('diff={}'.format(diff)) # 误差量级在 1e-5

4、Group Normalization

Group Normalization (GN) 适用于占用显存比较大的任务,例如图像分割。对这类任务,可能 batchsize 只能是个位数,再大显存就不够用了。而当 batchsize 是个位数时,BN 的表现很差,因为没办法通过几个样本的数据量,来近似总体的均值和标准差。GN 也是独立于 batch 的,它是 LN 和 IN 的折中。正如提出该算法的论文展示的:

import torch
from torch import nn


x = torch.rand(10, 20, 5, 5)*10000

# 分成 4 个 group
# 其余设定和之前相同
gn = nn.GroupNorm(num_groups=4, num_channels=20, eps=0, affine=False)
official_gn = gn(x)

# 把同一 group 的元素融合到一起
x1 = x.view(10, 4, -1)
mu = x1.mean(dim=-1).reshape(10, 4, -1)
std = x1.std(dim=-1).reshape(10, 4, -1)

x1_norm = (x1-mu)/std
my_gn = x1_norm.reshape(10, 20, 5, 5)

diff = (my_gn-official_gn).sum()

print('diff={}'.format(diff)) # 误差在 1e-4级

总结

这里再重复一下上文的类比。如果把类比为一摞书,这摞书总共有 N 本,每本有 C 页,每页有 H 行,每行 W 个字符。

 

计算均值时

 

BN 相当于把这些书按页码一一对应地加起来(例如:第1本书第36页,加第2本书第36页......),再除以每个页码下的字符总数:N×H×W,因此可以把 BN 看成求“平均书”的操作(注意这个“平均书”每页只有一个字)

 

LN 相当于把每一本书的所有字加起来,再除以这本书的字符总数:C×H×W,即求整本书的“平均字”

IN 相当于把一页书中所有字加起来,再除以该页的总字数:H×W,即求每页书的“平均字”

GN 相当于把一本 C 页的书平均分成 G 份,每份成为有 C/G 页的小册子,对这个 C/G 页的小册子,求每个小册子的“平均字”

 

计算方差同理

 

此外,还需要注意它们的映射参数γ和β的区别:对于 BN,IN,GN, 其γ和β都是维度等于通道数 C 的向量。而对于 LN,其γ和β都是维度等于 normalized_shape 的矩阵。

 

最后,BN和IN 可以设置参数:momentum 和 track_running_stats来获得在全局数据上更准确的 running mean 和 running std。而 LN 和 GN 只能计算当前 batch 内数据的真实均值和标准差。

 

除了上面这些归一化方法,还有基于它们发展出来的算法,例如 Conditional BatchNormalization 和 AdaIN,可以分别参考下面的博客:

 

尹相楠:

Conditional Batch Normalization详解

https://zhuanlan.zhihu.com/p/61248211

杨卓谦:

从Style的角度理解Instance Normalization

https://zhuanlan.zhihu.com/p/57875010

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在现有省、市港口信息化系统进行有效整合基础上,借鉴新 一代的感知-传输-应用技术体系,实现对码头、船舶、货物、重 大危险源、危险货物装卸过程、航管航运等管理要素的全面感知、 有效传输和按需定制服务,为行政管理人员和相关单位及人员提 供高效的管理辅助,并为公众提供便捷、实时的水运信息服务。 建立信息整合、交换和共享机制,建立健全信息化管理支撑 体系,以及相关标准规范和安全保障体系;按照“绿色循环低碳” 交通的要求,搭建高效、弹性、高可扩展性的基于虚拟技术的信 息基础设施,支撑信息平台低成本运行,实现电子政务建设和服务模式的转变。 实现以感知港口、感知船舶、感知货物为手段,以港航智能 分析、科学决策、高效服务为目的和核心理念,构建“智慧港口”的发展体系。 结合“智慧港口”相关业务工作特点及信息化现状的实际情况,本项目具体建设目标为: 一张图(即GIS 地理信息服务平台) 在建设岸线、港口、港区、码头、泊位等港口主要基础资源图层上,建设GIS 地理信息服务平台,在此基础上依次接入和叠加规划建设、经营、安全、航管等相关业务应用专题数据,并叠 加动态数据,如 AIS/GPS/移动平台数据,逐步建成航运管理处 "一张图"。系统支持扩展框架,方便未来更多应用资源的逐步整合。 现场执法监管系统 基于港口(航管)执法基地建设规划,依托统一的执法区域 管理和数字化监控平台,通过加强对辖区内的监控,结合移动平 台,形成完整的多维路径和信息追踪,真正做到问题能发现、事态能控制、突发问题能解决。 运行监测和辅助决策系统 对区域港口与航运业务日常所需填报及监测的数据经过科 学归纳及分析,采用统一平台,消除重复的填报数据,进行企业 输入和自动录入,并进行系统智能判断,避免填入错误的数据, 输入的数据经过智能组合,自动生成各业务部门所需的数据报 表,包括字段、格式,都可以根据需要进行定制,同时满足扩展 性需要,当有新的业务监测数据表需要产生时,系统将分析新的 需求,将所需字段融合进入日常监测和决策辅助平台的统一平台中,并生成新的所需业务数据监测及决策表。 综合指挥调度系统 建设以港航应急指挥中心为枢纽,以各级管理部门和经营港 口企业为节点,快速调度、信息共享的通信网络,满足应急处置中所需要的信息采集、指挥调度和过程监控等通信保障任务。 设计思路 根据项目的建设目标和“智慧港口”信息化平台的总体框架、 设计思路、建设内容及保障措施,围绕业务协同、信息共享,充 分考虑各航运(港政)管理处内部管理的需求,平台采用“全面 整合、重点补充、突出共享、逐步完善”策略,加强重点区域或 运输通道交通基础设施、运载装备、运行环境的监测监控,完善 运行协调、应急处置通信手段,促进跨区域、跨部门信息共享和业务协同。 以“统筹协调、综合监管”为目标,以提供综合、动态、实 时、准确、实用的安全畅通和应急数据共享为核心,围绕“保畅通、抓安全、促应急"等实际需求来建设智慧港口信息化平台。 系统充分整合和利用航运管理处现有相关信息资源,以地理 信息技术、网络视频技术、互联网技术、移动通信技术、云计算 技术为支撑,结合航运管理处专网与行业数据交换平台,构建航 运管理处与各部门之间智慧、畅通、安全、高效、绿色低碳的智 慧港口信息化平台。 系统充分考虑航运管理处安全法规及安全职责今后的变化 与发展趋势,应用目前主流的、成熟的应用技术,内联外引,优势互补,使系统建设具备良好的开放性、扩展性、可维护性。
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值