ETF定投数据分析6——蒙特卡洛算法2

本文探讨了在ETF定投中引入止盈止损策略的效果。作者通过Python编程模拟交易,发现简单的止盈策略能略微提升收益,但同时也遇到策略调整和回测数据准确性的问题。文章提到,不同ETF间相关性低,可能需要分开进行止盈操作。作者计划重构交易模拟和回测部分以优化策略,并分享了个人博客和CSDN链接供读者交流。
摘要由CSDN通过智能技术生成

春节过完了,我们继续量化投资学习之旅。先获取更多的数据,我定投的两个etf基金分别建立于2012年和2013年,我们以最晚的纳指etf的创立时间2013年5月1日为起始点,收集股价数据。
先收集数据,用之前用过的函数。只用运行一次。

#获取从2013年5月15日至2019年2月1日的数据
    beginTime = 20130515
    endTime = 20190201
    etf300 = etfdata.GetHistoryData("510300", beginTime, endTime)
    etfnas = etfdata.GetHistoryData("513100", beginTime, endTime)
    print(len(etf300), len
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值