一、引言
随着全球农业劳动力成本上升与老龄化加剧,水果采摘自动化成为现代农业发展的迫切需求。传统大型采摘设备存在地形适应性差(仅适用于平原果园,丘陵山区通过率<60%)、果实损伤率高(平均损伤率>15%)、作业灵活性不足(最小转弯半径>2m)等问题,难以满足我国 80% 以上丘陵山地果园的采摘需求。小型水果采摘机以 "轻便化、智能化、精准化" 为目标,需在 1.2m 宽度限制内实现 30-50kg/h 的采摘效率,同时将果实损伤率控制在 5% 以下。本文针对苹果、柑橘等典型水果,提出一种集轮式移动平台、五自由度机械臂、自适应末端执行器于一体的小型采摘机设计方案,通过运动学建模、动力学分析与试验验证,构建适用于复杂地形的高效采摘系统。
二、系统总体方案设计
2.1 设计目标与技术参数
以丘陵果园(坡度≤15°,果树间距 3-4m)为应用场景,确定采摘机核心参数:
项目 | 技术指标 | 项目 | 技术指标 |
整机尺寸 | ≤1200×800×1500mm | 最大载荷 | 50kg(含机械臂末端负载) |
整机质量 | ≤80kg(含电池) | 采摘效率 | ≥35 个 / 分钟(单果平均) |
移动速度 | 0.5-1.5m/s(可调) | 定位精度 | ≤±5mm |
续航时间 | ≥4 小时(锂电池 24V/15Ah) | 损伤率 | ≤5%(苹果 / 柑橘) |
2.2 总体架构设计
采用 "移动平台 + 机械臂 + 末端执行器 + 智能控制" 四层架构(图 1):
- 轮式移动平台:四轮独立驱动,配备差速转向系统与悬挂减震,适应坡度 15°、越障高度 10cm
- 五自由度机械臂:3 个旋转关节(基座 J1、大臂 J2、小臂 J3)+2 个腕部关节(俯仰 J4、旋转 J5),工作半径 800mm
- 末端执行器:柔性夹爪集成微型切割器,实现 "视觉定位 - 柔顺抓取 - 精准切割" 一体化操作
- 智能控制系统:基于 STM32+FPGA 的分布式控制,融合视觉识别、路径规划与力控算法
三、机械系统结构设计
3.1 移动底盘设计
3.1.1 驱动与转向系统
- 轮毂电机:4 个 200W 永磁同步电机(转速 0-3000rpm,扭矩 5N・m),配合行星齿轮减速器(减速比 10:1),输出扭矩 50N・m
- 差速转向:通过左右轮转速差实现最小半径 800mm 转向,配备霍尔效应转速传感器(精度 ±0.5%)
- 悬挂系统:双横臂式独立悬挂,弹簧刚度 20N/mm,阻尼系数 5N・s/m,减少颠簸对机械臂的影响
3.1.2 地形适应设计
- 轮胎选型:600×12 宽幅橡胶胎(接地面积 200cm²),胎压自适应调节(0.2-0.4MPa),松软地面打滑率≤10%
- 底盘高度:电动升降机构(调节范围 300-450mm),通过性间隙≥150mm
3.2 五自由度机械臂设计
采用轻量化铝合金(6061-T6)与碳纤维复合材质,各关节参数如下(表 1):
关节 | 类型 | 运动范围 | 减速器 | 定位精度 | 负载能力 |
J1 | 旋转 | 0-360° | 谐波减速器(100:1) | ±0.1° | 30kg |
J2 | 俯仰 | -60°-+90° | 谐波减速器(80:1) | ±0.2° | 25kg |
J3 | 俯仰 | -45°-+120° | 谐波减速器(60:1) | ±0.3° | 15kg |
J4 | 俯仰 | -90°-+90° | 齿轮齿条 | ±1mm | 5kg |
J5 | 旋转 | 0-360° | 同步带传动 | ±0.5° | 3kg |
3.2.1 运动学模型
建立 D-H 坐标系(表 2),推导正向运动学方程:\( T_{05} = T_{01}T_{12}T_{23}T_{34}T_{45} \)
其中,齐次变换矩阵 \( T_{ij} = \begin{bmatrix} \cos\theta_i & -\sin\theta_i\cos\alpha_i & \sin\theta_i\sin\alpha_i & a_i \\ \sin\theta_i & \cos\theta_i\cos\alpha_i & -\cos\theta_i\sin\alpha_i & 0 \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \)
3.2.2 动力学建模
采用拉格朗日方程建立动力学模型:\( M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \tau \)
其中,\( M(q) \)为惯性矩阵,\( C(q,\dot{q}) \)为科里奥利力与离心力矩阵,\( G(q) \)为重力矩阵。通过递归牛顿 - 欧拉法求解关节驱动力矩,最大驱动力矩需求:J2 关节 18N・m,J3 关节 12N・m。
3.3 末端执行器设计
3.3.1 柔性夹爪结构
- 欠驱动机构:双指并联结构,每个手指 3 个自由度(基关节转动 + 两指节被动自适应),采用形状记忆合金弹簧(回复力 2-5N)
- 柔性材料:爪面覆盖 3mm 厚度硅胶(邵氏硬度 40A),接触应力≤15kPa,可适应 40-100mm 直径果实
- 自适应调节:伺服电机驱动丝杠(导程 2mm),夹爪开度 30-80mm 连续可调,调节精度 0.5mm
3.3.2 果梗切割系统
- 微型刀片:采用 SK5 高速钢刀片(厚度 0.3mm,刃口角度 15°),切割速度 200mm/s,配备力敏传感器(量程 0-10N,分辨率 0.1N)
- 切割策略:视觉定位果梗基部后,刀片沿法向切入,当力传感器信号突增(>2N)时触发停止,确保切割残留≤2mm
四、智能感知与控制系统
4.1 视觉导航系统
4.1.1 多传感器融合
- RGB-D 相机:Intel RealSense D435i(深度精度 ±3mm,彩色分辨率 1280×720),实时获取果实颜色与三维坐标
- 近红外传感器:OPTO NIR-200(波长 850nm),检测果实成熟度(判别准确率 92%)
- IMU 单元:Xsens MTi-680(三轴加速度计 ±16g,陀螺仪 ±2000°/s),补偿机械臂运动姿态误差
4.1.2 果实识别算法
- 检测模型:改进 YOLOv8 模型,引入注意力机制(CBAM)优化小目标检测,在复杂光照(200-2000lux)下检测准确率 95.7%
- 定位算法:基于点云配准的 ICP 算法,结合机械臂手眼标定(精度 ±2mm),实现果实空间坐标(X,Y,Z)解算
4.2 运动控制策略
4.2.1 路径规划
- 全局规划:A * 算法生成无碰撞路径,栅格分辨率 10cm,规划时间≤200ms(100×100m 场景)
- 局部避障:动态窗口法(DWA)实时调整速度,避障距离 0.3-1.0m 自适应,响应时间≤150ms
4.2.2 力位混合控制
在末端执行器与腕部关节间集成六维力传感器(量程 0-50N,分辨率 0.1N),采用阻抗控制算法:\( F_e = K_d(x_d - x) + B_d(\dot{x_d} - \dot{x}) \)
其中,\( K_d \)为刚度矩阵(10-100N/mm 可调),\( B_d \)为阻尼矩阵(5N・s/m),实现抓取力精准控制(苹果 3±0.5N,柑橘 2±0.3N)。
五、仿真分析与优化
5.1 运动学仿真
利用 MATLAB Robotics Toolbox 构建机械臂模型,验证典型采摘轨迹(图 2):
- 工作空间:可达体积 0.8m³,覆盖高度 1.2m 以下果树冠层(占比 75% 采摘区域)
- 轨迹精度:直线轨迹误差≤3mm,圆弧轨迹误差≤5mm,满足定位精度要求
5.2 有限元分析
对机械臂关键部件进行应力校核(ANSYS Workbench):
- 大臂根部:满载工况下最大应力 120MPa(材料许用应力 240MPa,安全系数 2.0)
- 腕部关节:旋转工况下接触应力 80MPa(轴承许用应力 150MPa,安全系数 1.875)
- 末端夹爪:最大抓取力 5N 时,硅胶层应变 0.15%(<断裂应变 5%),满足无损要求
5.3 动力学优化
通过 ADAMS 多体仿真,分析振动特性:
- 一阶固有频率:18Hz(避开路面主要激励频率 5-15Hz)
- 最大振动加速度:底盘 1.2m/s²,机械臂末端 0.8m/s²(ISO 2631 舒适标准≤1.4m/s²)
六、实验验证与结果分析
6.1 实验平台搭建
- 硬件:原型机(图 3)、模拟果园(包含苹果树、柑橘树,树高 1.5-2.5m,果实间距 30-80cm)
- 软件:Ubuntu 20.04 系统,ROS melodic 框架,Python/C++ 混合编程
6.2 性能测试
6.2.1 视觉系统性能
测试项目 | 苹果 | 柑橘 | 葡萄(成串) |
识别准确率 | 97.2% | 95.8% | 89.3% |
定位误差 | ±3.2mm | ±4.1mm | ±6.5mm |
成熟度判别时间 | 45ms | 52ms | 80ms |
6.2.2 采摘作业性能
在 8 小时连续作业中,关键指标如下:
- 采摘效率:38 个 / 分钟(单果平均),较人工采摘(20 个 / 分钟)提升 90%
- 损伤率:苹果 4.2%、柑橘 3.8%,优于行业标准(10%)
- 越障能力:通过 10cm 高台阶(成功率 92%),爬坡 15° 时打滑率 8%
6.2.3 误差来源
- 视觉遮挡:枝叶遮挡导致果实漏检(占比 35%)
- 机械振动:不平路面引起末端定位偏差(±2-5mm)
- 果梗弯曲:柔性果梗切割时产生 1-3mm 偏移
6.3 对比分析
与国内外同类设备对比(表 3):
指标 | 本设计 | 日本久保田 | 美国 John Deere |
作业宽度 | 800mm | 1200mm | 1500mm |
损伤率 | 3.8%-4.2% | 8.5% | 6.2% |
续航时间 | 4h | 3h | 5h |
地形适应 | 坡度≤15° | 坡度≤10° | 坡度≤12° |
七、优化方向与工程应用
7.1 技术改进
- 轻量化升级:采用碳纤维臂杆(减重 20%),优化底盘结构(减重 10kg)
- 智能算法:引入强化学习动态调整抓取力,提升成串果实采摘成功率(目标>90%)
- 能源管理:增加能量回收系统(制动能量回收率 30%),续航提升至 6 小时
7.2 产业化路径
- 丘陵果园:优先推广至云南、四川等山地苹果产区,替代 50% 人工采摘
- 设施农业:适配温室大棚,与 AGV 配合实现全自动采摘流水线
- 功能扩展:集成果实分级模块,同步完成采摘与品质检测
八、结论
本文设计的小型水果采摘机通过五自由度机械臂与自适应末端执行器的协同,实现了复杂环境下的高效无损采摘。实验表明,该设备在丘陵果园的综合性能优于国内外同类产品,损伤率降低 40%-50%,作业效率提升 60%-90%。未来研究需进一步攻克成串果实识别、动态环境适应性等技术难题,推动小型采摘机从原型验证向规模化应用转化,为智慧农业发展提供关键装备支撑。