KS曲线和ROC曲线(二)

本文通过实例演示了如何使用Python的sklearn库绘制ROC曲线和KS曲线,包括构造数据、转换为DataFrame、调用roc_curve函数获取FPR、TPR及阈值,以及绘制并对比这些曲线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇文章我们说了KS曲线和ROC曲线的理论知识,这篇文章我们来实际操作一下。

import pandas as pd
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt

### 构造数据
data = [[1,1,0,1,0,0],[0.9,0.8,0.5,0.6,0.2,0.6]]
### 转化喂dataframe,其实这步是多余的。
df = pd.DataFrame(columns =['type','prob'])
### 数据标签
df['type'] = data[0]
### 数据标签为1的概率
df['prob'] = data[1]

### 使用roc_curve函数获取fpr,tpr和threshold列
fpr, tpr, thresh = roc_curve(df.type, df.prob)

### 画tpr曲线
plt.plot(tpr, label='TPR')
### 画fpr曲线
plt.plot(fpr, label='FPR')
### 画ks曲线
plt.plot(tpr-fpr, label='KS')
plt.xlabel('thresholds')
plt.legend()
plt.show()

### 画roc曲线
plt.plot(fpr,tpr)
plt.xlabel('FPR')
plt.ylabel('TPR')

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值