原文网址:http://zhoufazhe2008.blog.163.com/blog/static/63326869200961364551370/
上一回说到,单个矩形脉冲的时域波形如下图:
图1 单个矩形脉冲信号
根据傅里叶变换可求出其频谱函数
(1)
频谱函数的图像(频域分布曲线)如下图:
图2 单个矩形脉冲的频谱函数
一、特殊的单个矩形脉冲信号
如果我们令单个矩形脉冲信号的脉幅在数值上取
(2)
则无论脉宽τ怎样变化,函数图象下面的面积恒等于1,即
(3)
如下图所示:
图3 特殊的单个矩形脉冲
这个特殊的单个矩形脉冲信号的数学表达式为
(4)
因而其傅立叶变换由式(1)得
(5)
这是一种最大幅值为1的抽样函数,其频域曲线如下图
图4 特殊的单个矩形脉冲的频谱
二、单位冲激函数的定义
对图3和式(4)表示的特殊的单个矩形脉冲,如果我们令脉宽τ趋于0,取极限,则单个矩形脉冲变成在t=0处持续时间无限小、幅度无限大、面积仍为1的特殊信号(或广义函数)。科学界把这个广义函数叫做单位冲激函数或狄拉克(Dirac)函数。记为
(6)
单位冲激函数的图象如下图所示
图5 单位冲激函数的图象
单位冲激函数是一种广义函数,它的幅值为无穷大,图象只能用带箭头的射线表示。但通常不标出其幅值∞,而是只用括号标出其冲激强度(S),即面积。由式(3)和(6)可知其面积(冲激强度)为1,所以称之为“单位”冲激函数。此外,单位冲激函数的自变量不仅仅限于时间t,可以是任何物理量x。
实际上还常用延迟的单位冲激函数,数学表达式如下:
(7)
其图象为
图6 延迟的单位冲激函数的图象
三、单位冲激函数的性质
根据单位冲激函数的定义,它具有下列最基本的性质:
1、广义积分归一性:
(8)
2、筛分性质:单位冲激函数与任意函数乘积,等于只筛选出t=t0时刻f(t)的值作为冲激强度。
(9)
3、抽样性质:
(10)
更一般地,有
(11)
即通过与δ函数(或延时的δ函数)乘积的积分,把任意的连续函数f(t)抽样为t=t0处的一个函数值。
4、微积分性质:δ函数的累计积分等于单位阶跃函数ε(t)。
(12)
反过来单位阶跃函数的微商等于单位冲激函数:
(13)
其中单位阶跃函数为
(14)
其图象为
图7 单位阶跃函数的图象
四、单位冲激函数的频谱
由单位冲激函数的定义和抽样性质,其频谱密度函数(傅里叶变换)为:
(15)
频谱如下图:
图8 单位冲激函数的频谱
实际上,由式(5)和图5可以看出,当特殊的单个矩形脉冲信号的持续时间τ趋于无穷小时,频谱图5中的零点趋于无穷远处,即
(16)
则很容易看出图5的频谱曲线就转化成图8的水平线。可见单位冲激函数的频带宽度为无穷大,科学界称这样的频谱密度为“均匀谱”或曰“白色谱”。
五、连续函数的冲激表示
引进冲激函数概念,为信号的时域分析和频域分析提供了极大的方便。比如任何一个连续函数f(t)都可以表示为无穷多个不同加权的冲激函数之和,即加权积分:
(17)
单位冲激函数是连续函数与离散函数之间相互转换的桥梁,因此在工程技术尤其是IT领域至关重要。具体应用且听下回分解。