数据分析统计学原理第七章:抽样和抽样分布 | 我的统计学原理复习日记

我们选取样本是为了收集推断所需的数据,并且回答关于总体的研究问题。
抽样结果提供的仅仅是相应总体特征值的估计。
样本只包含了总体的一部分,可以预见会有抽样误差。

抽样总体( sampled population):从中抽取样本的总体
抽样框( frame):用于抽选样本的个体清单

从有限总体的抽样
在从有限总体抽样时,统计学家建议采用概率抽样,因为基于概率抽样的样本可以对总体进行有效的统计推断。若每个容量为n的样本以相同的概率被抽到,则称其为简单随机样本。

简单随机样本(有限总体):
从容量为N的有限总体中抽取一个容量为n的样本,如果容量为n的每一个可能的样本都以相等的概率被抽出,则称该样本为简单随机样本。

自有限总体选择简单随机样本的一种抽样流程是,使用随机数表每次只选择一个样本点,总体中的每一个体等可能被抽到。用这种方法抽得的n个个体满足自有限总体的简单随机样本的定义。

选取简单随机样本时,在30名管理人员被选出之前,表中先前已经出现过的随机数可能重复出现。由于该管理人员已经被选入样本了,我们并不想将一个管理人员多次选入,所以忽略已出现过的随机数。这种选取样本的方式叫作无放回抽样( sampling without replacement)。如果我们选取样本时,对已经出现过的随机数仍选入样本,某些管理人员可能在样本中被两次或更多次地包括进来,则我们进行的是有放回抽样( sampling with replacement)。抽样中,有放回抽样是一种取得简单随机样本的有效途径,然而,无放回抽样更为常用。当我们提到简单随机抽样时,我们总是假定抽样是无放回的。

从无限总体的抽样
当从无限总体中抽取一个随机样本时,必须小心仔细判断。不同情形可能需要采取不同的抽取方法。我们通过两个例子来说明条件1“抽取的每个个体来自同一总体”和条件2“每个个体的抽取是独立的”的含义。在普通的质量控制的应用中,生产过程中所生产的产品数量是无限的。抽样总体由正在运行的生产过程中生产的全部产品,而不仅仅那些已经生产的产品组成。因为我们不可能列出生产的全部产品的清单,所以认为总体是无限的。
更具体地,比如设计一条生产线用于盒装早餐麦片,早餐麦片的平均重量为每盒24盎司。为判断生产线是正常运行还是由于机器故障使得生产线的填充量过多或者不足,一位质量控制检验员定期从生产线上抽取12盒产品组成一个样本。
在这样一个生产操作中,选取一个随机样本时最关心的是条件1“抽取的每个个体来自同一总体”是否成立。
为了确保这一条件成立,必须在近似相同的时点选择产品。这样才能避免检验员抽取的某些产品是在生产线正常运行时生产的,而另一些产品是在生产线非正常运行时生产的,从而使得每盒的填充量过多或者不足。在诸如这样的生产过程中,设计的生产流程应确保每盒麦片的装盒是相互独立的,从而满足条件2,即“每个个体的抽取是独立的”.在这个假定下,检验员只需关注条件“每个个体来自同一总体”是否成立即可。
从无限总体抽取随机样本的另一个例子是,考虑由到达快餐店的顾客组成的总体。假定快餐店要求一名雇员选取顾客样本,完成一个简短的调查问卷。顾客光临快餐店是一个正在进行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值