奇偶性

本文探讨了数学中函数的奇偶性及其与导数的关系,证明了奇函数的导数是偶函数,偶函数的导数是奇函数,但反向推断并不总是成立。此外,还解释了连续奇函数和偶函数的原函数性质,并通过泰勒展开式展示了奇偶性如何帮助解题。同时,提到了反函数的存在性和单调性的关系,并给出了一个分段函数的例子来说明。
摘要由CSDN通过智能技术生成

奇偶性

f(x)奇函数 => f'(x)偶函数   但反之不成立 如x^{3}+1的导数3x^{2}偶函数 推不出原函数奇函数

f(x)偶函数 <=> f'(x)奇函数

证明:法一:f(x) 奇函数 则f(-x)=-f(x) 对上式求导得 -f'(-x) = -f'(x)  所以 f'(-x)=f'(x) 偶函数

f(x)偶函数 则f(x)=f(-x) 求导得 f'(x) = - f'(-x) 奇函数

法二:导数定义 

f'(x)= \lim_{\Delta x \to 0}\frac{f(-x+\Delta x)-f(-x)}{\Delta x} = \lim_{\Delta x \to 0}\frac{-(f(x-\Delta x)-f(x))}{\Delta x}=\lim_{-\Delta x\rightarrow 0}    =f'(-x)

原函数的问题

连续的奇函数的原函数都是偶函数,连续的偶函数的原函数之一是奇函数

为什么要连续?考虑变上限积分函数\int_{a}^{x}f(t)dt 对其求导可得f(x)

f(x)奇函数 则 \int_{0}^{x}是偶函数 再加上c也是偶函数

f(x)偶函数 \int_{0}^{x}是奇函数 ,在0处必为0 不能加c

奇偶性可以帮助解题

常见的奇函数ln\frac{1-x}{1+x}ln(x+\sqrt{1+x^{2}}),\frac{e^{x}-1}{e^{x}+1}

如f(x)=\frac{sinx}{1+x^{2}} 是奇函数,求x=0处的三阶泰勒展开为ax+bx^{2}+cx^{3}

可知b一定为0

结论:偶函数泰勒展开只有偶次项 ,奇函数泰勒展开只有奇次项


关于反函数

原函数单调,必有反函数,反之,有反函数不一定单调

分段函数f(x)=x (0<x<1) 3-x ([1,2]) 

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值