泰勒展开式记忆方法

泰勒认为“仿造一段曲线,要先保证起点相同,再保证在此处导数相同,继续保证在此处的导数的导数相同……

一、简介

泰勒公式,也称泰勒展开式。是用一个函数在某点的信息,描述其附近取值的公式。如果函数足够平滑,在已知函数在某一点的各阶导数值的情况下,泰勒公式可以利用这些导数值来做系数,构建一个多项式近似函数,求得在这一点的邻域中的值。

关于多项式,它本身的运算是有限项的加减法和乘法,因此泰勒思考,能否用多项式函数去近似表达给定的函数。我们期望两个函数在某一点的函数值、一阶导数值、二阶导数值等相等,因为这些值表达了函数图像最基本和最主要的性质,这些性质的逼近可以使得两个函数图像逼近。

余项,即为误差,我们使用多项式函数在某点展开,逼近给定的函数,但是最后肯定会有一点点误差。

二、常见泰勒展开式

1、e^{x}

e^{x}=1+x+\frac{x^{2}}{2!} +\frac{x^{3}}{3!} +... +\frac{x^{n}}{n!}

对两边进行求导

(e^{x})'=(1+x+\frac{x^{2}}{2!} +\frac{x^{3}}{3!} +... +\frac{x^{n}}{n!})'

求导得:

 e^{x}=0+1+\frac{x}{1}+\frac{x^{2}}{2!} +\frac{x^{3}}{3!} +... +\frac{x^{n}}{n!}

 两边都不改变,并且满足e^{0}=1

2、a^{x}

x换成x\ln a,带入上面的公式:

a^{x}=e^{x\ln a}=1+x\ln a+\frac{(x\ln a) ^{2}}{2!} +\frac{(x\ln a)^{3}}{3!} +... +\frac{(x\ln a)^{n}}{n!}

3、\sin x

\sin x为奇函数,只有奇数项,并且\sin 0=0,x的次方数也为奇数项,符号正负交替

\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}...+\frac{(-1)^nx^{2n+1}}{(2n+1)!}

 4、\cos x

我们可以发现,\sin x的求导就是\cos x

\cos x为偶函数,只有偶数项,并且\cos 0=1,x的次方也为偶数项,符号正负交替

\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}...+\frac{(-1)^nx^{2n}}{(2n)!}

5、\ln (1+x)

记忆:无阶乘,符号正负交替

\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+...\frac{(-1)^nx^{n+1}}{n+1}

6、\tan x

默默地记住它...

\tan x=x+\frac{x^{3}}{3}+\frac{2x^{15}}{15}+\frac{17x^{315}}{315}+...

7、\arctan x

\arctan x =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+...

8、\arcsin x

\arcsin x=x+\frac{x^{3}}{6}+...

9、最后的汇总

注意:使用泰勒展开式时要注意分子分母同阶 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值