文章最前: 我是Octopus,这个名字来源于我的中文名--章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github ;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。
相关文章:
- LeetCode:55. Jump Game(跳远比赛)
- Leetcode:300. Longest Increasing Subsequence(最大增长序列)
- LeetCode:560. Subarray Sum Equals K(找出数组中连续子串和等于k)
文章目录:
题目描述:
输入整数数组 arr
,找出其中最小的 k
个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。
示例 1:
输入:arr = [3,2,1], k = 2
输出:[1,2] 或者 [2,1]
示例 2:
输入:arr = [0,1,2,1], k = 1
输出:[0]
限制:
0 <= k <= arr.length <= 10000
0 <= arr[i] <= 10000
题目分析:
首先这个问题,就是一个普通的排序问题: 排序分为选择排序,冒泡排序,插入排序,快速排序,基数排序,归并排序等;可以解决该问题。
1)暴力算法:
首先对于解决本题目,先想到使用冒泡排序,冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。 它的思路是先将数组进行排序,然后取前面k个值,最直接的思路:
- 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
- 针对所有的元素重复以上的步骤,除了最后一个;
- 重复步骤1~3,直到排序完成。
排序完成之后再选取前面k个值:
/**
* 获取最小多个值;快速排序
*
* @param arr 数组
* @param k k个数
* @return 数组
*/
public int[] getLeastNumbers(int[] arr, int k) {
if (arr.length == 0)
return arr;
for (int i = 0; i < arr.length; i++)
for (int j = 0; j < arr.length - 1 - i; j++)
if (arr[j + 1] < arr[j]) {
int temp = arr[j + 1];
arr[j + 1] = arr[j];
arr[j] = temp;
}
return Arrays.stream(arr).limit(k).toArray();
}
时间复杂度:O(n)
空间复杂度:O(1)
2)优化算法(堆排序):
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
- 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
- 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
这种方法相对于上一种方法有一定的优化。
/**
* 获取最小多个值,利用优先队列
*
* @param arr 数组
* @param k k个数
* @return 数组
*/
public int[] getLeastNumbers2(int[] arr, int k) {
PriorityQueue<Integer> priorityQueue = new PriorityQueue();
List<Integer> list = new ArrayList<>();
for (int num : arr) {
priorityQueue.add(num);
if (priorityQueue.size() > arr.length - k) {
list.add(priorityQueue.poll());
}
}
return list.stream().mapToInt(e -> Integer.valueOf(e)).toArray();
}
时间复杂度:O(n.logn)
空间复杂度:O(n)
3)最优算法(快速排序)
快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:
- 从数列中挑出一个元素,称为 “基准”(pivot);
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
/**
* 获取最小多个值 ,利用快速排序方法
*
* @param arr 数组
* @param k k个数
* @return 数组
*/
public int[] getLeastNumbers3(int[] arr, int k) {
int len = arr.length;
if (k == 0 || k > len) {
return new int[0];
}
int target = k - 1;
int left = 0;
int right = len - 1;
while (true) {
int index = partition(arr, left, right);
if (index == target) {
int[] res = new int[k];
for (int i = 0; i < k; i++) {
res[i] = arr[i];
}
return res;
} else if (index < target) {
// 下一轮搜索区间在 [index + 1, right]
left = index + 1;
} else {
// 下一轮搜索区间在 [left, index - 1]
right = index - 1;
}
}
}
/**
* 进行分区操作
*
* @param arr 数组
* @param left 左边
* @param right 右边
* @return 下标
*/
private int partition(int[] arr, int left, int right) {
int pivot = arr[left];
int index = left;
for (int i = left + 1; i <= right; i++) {
if (arr[i] < pivot) {
index++;
swap(arr, index, i);
}
}
swap(arr, left, index);
return index;
}
/**
* 交换数据中元素的位置
*
* @param arr 数组
* @param i 位置i
* @param j 位置j
*/
private void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
时间复杂度:O(n)
空间复杂度:O(n)