2.19.1.11

一、特征池

    比如一张图片的多个人脸分类中,检测出图片中所有的人脸,并将人脸用vector保存各个人脸的坐标、大小(用矩形表示),这vector就叫特征池?

来自:https://blog.csdn.net/itismelzp/article/details/50379359

    这样经过特征读取这一步后,获得了一个特征池,池中每一个特征表示在图中某个矩形位置提取ID为0到35的某个特征量

来自:https://blog.csdn.net/ljp12345/article/details/52621298

最近,为了解决跟踪的模糊歧义问题,有人提出了多实例学习(MIL)。样本被放入包中且只提供包的标签。如果包中有一个正样本,那么就为正包;如果包中所有的样本都是负样本,那么就是负包。选择跟踪位置附近的样本放入正包中,选择远离跟踪位置的样本放入负包中。通过优化包的似然函数来设计分类器,为了处理外观的不断变化,通过最大化包的似然函数提出一个在线的MIL提升算法来顺序从特征池中选择有区分能力的特征。最后把所选择的弱分类器线性组合成一个强分类器,从而在下一帧把物体从背景中分离处理。实验表明它比先进的跟踪器能够更好地处理视觉漂移的问题[2]。 
尽管他们取得了成功,但是,MIL跟踪器[2]有以下的缺点。第一、所选择的特征携带较少的信息量。为了使分类器有足够的区分能力,就需要从特征池中选择大量的特征,这就给计算带来了不便。第二、选择的特征越多,这些特征之间的区别就越小,这也会降低分类器的性能,从而导致漂移。

来自:https://blog.csdn.net/xudong_98/article/details/51800265

92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页