1. 主要突破
经典的目标检测算法使用滑动窗法依次判断所有可能的区域。本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断。
经典的DPM目标检测算法在区域中提取人工设定的特征(Haar,HOG)。本文则需要训练深度网络进行特征提取。可供使用的有两个数据库:
一个较大的识别库(ImageNet ILSVC 2012):标定每张图片中物体的类别。一千万图像,1000类。
一个较小的检测库(PASCAL VOC 2007):标定每张图片中,物体的类别和位置。一万图像,20类。
本文使用识别库进行预训练,而后用检测库调优参数。最后在检测库上评测。
2. 提取推荐框
采用selective search,基于graph-cut产生过分割,然后重复迭代将相似度高的区域合并,合并停止后,现有的区域就是候选区域。
3. 具体训练流程
(1)有监督预训练:使用ILSVRC2012图像库进行分类,仅仅对每张图片的类别进行分类,学习率为0.01.
(2)有监督微调:使用带类别和目标位置标记的PASCAL VOC 2007库,将CNN网络的最后一层全连接层更换为目标类别数21个神经元(多出的一个神经元为背景类),对于每幅图像的推荐框,与真实框重叠0.5以上的推荐框作为正样本,其他推荐框作为负样本(注意正负样本都是从推荐框中取),学习率为0.001,对于每一批训练样本,采用32个正样本和96个负样本。
(3)使用hard negative mining进行网络优化:即将测试数据中出现的false positive加入到负样本中,再次进行训练