ROS中CANopen的使用(1)

ROS中CANopen的使用(1)

今天终于实现了通过ros来控制无人车,心情非常激动,先简要记录。

  1. 工作环境
    工控机使用的Ubuntu18.02,can卡采用的innodisk的UC——B202,ros系统是melodic。
  2. 实现过程
#include"ros/ros.h"
#include"learning_vehicle/Frame.h"

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    ros::init(argc,argv,"lenovo");
    ros::NodeHandle nh;
    ros::Publisher pub=nh.advertise<learning_vehicle::Frame>("sent_messages",10);

    learning_vehicle::Frame t_message;
    t_message.id=161;
    t_message.dlc=8;
    t_message.data[0]=1;
    t_message.data[1]=0;
    t_message.data[2]=0;
    t_message.data[3]=0;
    t_message.data[4]=0;
    t_message.data[5]=0;
    t_message.data[6]=0;
    t_message.data[7]=0;

    ros::Rate rate(10);
    while (ros::ok())
    {
        ROS_INFO("发送成功!");
        pub.publish(t_message);
        rate.sleep();
        ros::spinOnce();
    }
    
    return 0;
}

启动Lenovo这个节点和topic_to_socketcannode这个节点,这样就可以把你的can信号发送给你的socketcan设备了,Frame.msg是CANopen自带的数据类型,可以查看,然后按照他的格式来编写。

  1. 个人体会
    利用CANopen里面的socketcan——bridge功能包,其中有三个节点代码,socketcan_to_topicnode,socketcan_bridgenode,topic_to_socketcannode。
    socketcan——bridgenode
    这个节点的可以收到来自socketcan设备的信息,并将其变成ROS中的topic,也就是received_msg。同时也可以将收到的topic,也就是sent_msg转成can信号发送给设备。在topic_to_socketcan.cpp文件中有一个send(f)即可体现。
    至于设备就是你绑定的can,记住这个节点的用处就是向你绑定的设备传can信号,也可以把这个设备的can信号变成topic。

    socketcan_to_topicnode
    topic_to_socketcannode
    这些节点同理,注意:他们都会绑定到一个can设备上,他们所有的publish和subscribe都只针对该设备
    frame.h的头文件需要你从下载的canopen包里拷出来,放到自己的msg包下,本文只是简要介绍ros里的canopen包,代码运行不了,多半是ros使用不熟练,可以去b站搜索相关视频。
    CANopen下载
    ros学习推荐
### 使用Pentaho Kettle读取CSV文件中的JSON数据 为了使用 Pentaho Data Integration (Kettle) 处理 CSV 文件内的 JSON 数据,可以通过一系特定的步骤完成此过程。这些步骤涉及多个组件和转换逻辑的设计。 #### 准备工作 确保已安装并配置好最新版本的 PDI 工具,并准备好要导入的包含 JSON 结构化内容的 CSV 文件[^1]。 #### 创建新转换 启动 Spoon(即 Kettle 的图形界面),创建一个新的转换项目,在其中定义必要的输入源、解析器以及目标输出位置。 #### 添加CSV 输入步 从左侧工具栏拖拽 "CSV file input" 组件到画布上,设置其属性以指向本地存储路径下的待处理 CSV 文档。注意调整分隔符及其他格式选项匹配实际文件结构。 #### 解析JSON 字段 由于 CSV 中嵌套着 JSON 格式的字符串字段,因此需引入 `Modified Java Script Value` 或者更推荐使用的专用插件如 `JSON Input` 来提取并拆解该复杂对象成为单独项。对于后者: - 将前一步骤产生的流导向至 “JSON Input” - 配置 JSON 路径表达式来指定哪些部分应该被映射成新的记录集成员;例如 `$[*].propertyname` ```json [ {"id": 1, "data": {"fieldA":"valueA", "fieldB":"valueB"}}, {"id": 2, "data": {"fieldC":"valueC"}} ] ``` 上述例子中如果希望获取 fieldA 和 fieldB,则应分别编写 `/data/fieldA`, `/data/fieldB` 类似的 XPath 表达方式。 #### 输出结果 最后安排合适的写入机制保存最终得到的数据表单,比如数据库表、平面文件或其他任何形式的目标端点。这可能涉及到进一步的数据类型转换或是附加业务规则的应用。 通过以上方法能够有效地利用 Kettle 实现对非传统关系型数据模型的支持,特别是当面对半结构化的文本资料时提供了灵活而强大的解决方案。
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值