由于工作的原因没有在学校里那么多学习的时间,对于很多基础知识纠结好久还是觉得应该记录下来,于是就打开了好多年没用的csdn,开始记录下自己的偶尔的学习过程,希望能以此勉励自己。当然第一篇博客,自然逼格不能低,先来谈谈自己一直很好奇的,大牛们熟的不能再熟的sigmod函数究竟是怎么得来的。
很多人可能会说,懵的?那你怕是石乐志,其实很多地方都有解释这个函数为什么好,但始终没有给出这个玩意儿到底是怎么出来的。话不多说,先给结论:最大熵原理
对于最大熵原理,首先给出一个定理:对于概率模型而言,在缺乏先验的情况下,条件熵最大的模型是最好的模型。很好理解,熵最大意味着不确定度最高,在没有先验知识情况下,自然这是最好的假设(注意和决策树中特征选择时的熵区分)
好,下面开始装逼(推导主要参考了统计学习方法)
首先,明确我们的目标:条件熵最大:
这里上面波浪号可以理解为是联合概率密度和样本特征分布已知(根据样本先验可知)&#x