为什么PDF文件更适合LLM大模型信息提取?

为什么PDF文件更适合LLM大模型信息提取?

在Dify平台中,我们通过LLM大模型提取上传文件中的指定信息。目前使用的大模型包括qwen2:7b和deepseek-r1:70b。然而,我们发现一个有趣的现象:在提取信息时,PDF文件的表现明显优于DOC和DOCX文件。本文将探讨这一现象的原因,并给出相应的建议。

工作流概述

我们的工作流如下:
在这里插入图片描述

  1. 开始节点:用户上传文件,支持txt、doc、docx、pdf、ppt、md等常见文档格式。
  2. 文档提取器:文档提取器节点的作用是将用户上传的文档解析并读取其中的信息,然后将这些信息转化为文本格式传递给LLM大模型进行处理。
  3. LLM处理:LLM大模型根据输入的文本内容提取指定的信息。
  4. 结束节点:输出提取结果。

为什么需要文档提取器?

LLM大模型自身无法直接读取或解释文档的内容。因此,我们需要在LLM之前加入文档提取器节点。文档提取器可以理解为一个信息处理中心,它通过识别并读取输入变量中的文件,提取信息后并转化为string类型输出变量,供下游节点调用。

输入与输出变量

  • 输入变量:文档提取器仅接受以下数据结构的变量:
    • File,单独一个文件
    • Array[File],多个文件
  • 输出变量:输出变量固定命名为text。输出的变量类型取决于输入变量:
    • 输入变量为File时,输出变量为string
    • 输入变量为Array[File]时,输出变量为array[string]

问题描述

在实际操作中,发现:

  • 当DOC和DOCX文件经过文档提取器解析后,再由LLM大模型提取信息时,会出现提取信息不准确或有些信息提取不到的情况。
  • 然而,当我们将DOC和DOCX文件转换为PDF格式后,LLM提取的信息则比较准确。

原因分析

1. 格式稳定性

  • PDF格式
    • PDF是静态格式,具有较强的格式稳定性,在不同设备和软件中显示效果一致。
    • 文档提取器在处理PDF时,能够更准确地识别文本的位置、字体、大小等信息,从而更精确地提取出完整的文本内容。
  • DOC和DOCX格式
    • DOC和DOCX是Microsoft Word的文档格式,虽然也有一定的规范,但它们的格式相对更灵活,可能包含更多的排版元素和样式信息。
    • 这些额外的信息有时可能会干扰文档提取器对文本内容的准确提取,导致一些文本被错误地识别或遗漏。

2. 文本提取可靠性

  • PDF文本层
    • 现代PDF通常包含可直接提取的文本层,提取准确率高。
  • DOCX复杂结构
    • Word文档中的文本框、表格、页眉页脚等复杂元素可能导致提取错位。

3. 标准化程度高

  • PDF格式
    • PDF是一种广泛应用的标准化文档格式,有明确的规范和标准定义。各种文档处理工具和库对PDF的支持也较为成熟和稳定。
    • 文档提取器在处理PDF时能够遵循这些标准,从而提高提取的准确性。
  • DOC和DOCX格式
    • DOC和DOCX格式虽然也有一定的标准,但由于Microsoft Word的广泛使用和不断更新,可能存在一些版本兼容性问题。
    • 不同版本的Word生成的DOC和DOCX文档在格式上可能会有一些差异,这也会给文档提取器带来一定的挑战,影响关键信息提取的准确性。

建议(前提PDF中文字可复制)

为了提高信息提取的准确性,建议用户在上传文档时尽量选择PDF格式。如果原始文档是DOC或DOCX格式,建议先将其转换为PDF格式后再上传。

但是

如果PDF中文字不可复制,或者是图片转PDF,扫描件等情况,文档提取器可能提取不到信息,或者提取信息不准确。

参考文档:文档提取器

### 使用 Dify 自动生成 PPT 的方法 为了利用 Dify 创建自动化的 PowerPoint (PPT) 文件,通常需要先理解 Dify 平台的功能以及它如何处理文档和数据转换。虽然 Dify 主要用于构建 AI 问答助手并简化知识管理流程[^2],但可以通过一些创意性的应用来实现自动生成 PPT。 #### 准备工作 确保拥有一个已配置好的 Dify 环境,并准备好想要转化为幻灯片的内容素材。这些素材最好是以结构化的方式存储在一个文件中,比如 Markdown (.md),这样容易被解析成适合展示的信息片段。 #### 步骤说明 由于 Dify 官方并没有直接提供生成 PPT 功能的支持,因此建议采用间接的方法: 1. **创建模板** 设计一套基础的 PPT 模板,该模板应包含标题页、内容页面布局以及其他任何希望保持一致的设计元素。此部分可以在 Microsoft PowerPoint 中完成保存为 .potx 格式的文件以便后续使用。 2. **编写脚本** 利用 Python 编写一段简单的程序读取Dify 处理后的文本资料(如之前提到过的 `dify_doc.md`),并将之填充到预先设计好的 PPT 模板里去。下面是一个基于 python-pptx 库的例子: ```python from pptx import Presentation from pptx.util import Inches def create_presentation_from_markdown(md_file, template_path='template.potx'): prs = Presentation(template_path) with open(md_file, 'r', encoding='utf-8') as file: lines = file.readlines() slide_layout = prs.slide_layouts[0] for line in lines: if not line.strip(): continue slide = prs.slides.add_slide(slide_layout) title = slide.shapes.title content = slide.placeholders[1] # 假设每行代表一页新的幻灯片上的主要内容 title.text = f"Slide Title" content.text = line.strip() output_filename = "generated_presentation.pptx" prs.save(output_filename) print(f"PPT saved to {output_filename}") create_presentation_from_markdown('path/to/your/dified_document.md') ``` 这段代码会遍历给定 markdown 文档中的每一行文字,在每次迭代时都会向现有的演示文稿添加一个新的空白幻灯片,并设置其标题与正文内容。最后将整个项目保存下来作为一个完整的 PPT 文件。 请注意这只是一个非常基础的概念验证版本;实际应用场景下可能还需要考虑复杂的逻辑,例如支持多级列表项、图片嵌入等功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值