自己学习音乐推荐系统的总结,一直用别人的创意,用别人的作品,虽然看似可以快速拿到自己想要的东西,但是长远来看是不行的。
还是没有什么乐趣,还是自己的东西好,因为是属于自己的时间。
论文学习:
1.电子科技大学:基于深度学习的个性化音乐推荐系统
这个比较难,涉及到音频和字的拆解。
推荐系统原理概括: 通过对基于深度学习的推荐系统相关算法以及深度学习技术在音乐领域的应用的深入研究,将音频信号和歌词进行预处理后,再通过深度学习模型卷积递归神经网络(CRNN)和卷积循环注意层次循环神经网(CRAHRNN)得出表示用户兴趣和音乐的特征向量,根据特征向量的相似度,应用基于内容的推荐方法以TopN的方式生成音乐推荐列表,从而为用户推荐喜爱的音乐。
论文中一些推荐系统原理:
基于有向标签的个性化音乐推荐系统,通过标签的标签序列将用户标签和音乐标签关联起来,对标签和音乐标签进行关联和解析建模,构造特征有向图,为用户提供基本的音乐服务,并推送个性化音乐推荐列表。
基于上下文感知的标签推荐系统,利用神经网络学习图像特征。上下文表示由两层全连接前馈神经网络处理。
通过自适应卷积神经网络提取评论局部特征,使用门控循环单元(GRU)或Transformer提取全局特征,融合局部和全局提取的特征,更好的表示评论信息,构建了端到端的基于深度学习的评分预测推荐模型。
基于内容的推荐算法:
- 评分->排序->显示
其他的推荐算法:
基于协同过滤的推荐算法:
总体思想:根据用户的历史评分记录,确定用户的兴趣区域,得到与用户具有相同兴趣区域的用户群组。
举例,张三和王五都购买过产品A,而张三对产品B的评价是喜欢,那么经过协同过滤算法的计算,假设王五也喜欢产品B,那么系统就会向王五推荐产品B。
基于用户的协同过滤算法:
举例,张三喜欢产品C,然而产品D和产品C极为相似,那么根据协同过滤算法,系统将会把产品D推荐给用户张三。
基于项目的协同过滤算法:
混合推荐算法:
(1)加权混合:首先对不同的推荐方法进行分析计算,得到其对应的推荐结果。
然后根据需求给出权值,最后对结果组合进行加权,根据加权结果的大小形成推
荐列表
(2)分层混合:在特定场景下,根据推荐效果划分不同的推荐方法。然后,在
相应的推荐场景中,优先选择该场景中质量较高的推荐算法得到的结果,最后按
照后续的其他方法进行顺序推荐。
(3)组合推荐:由于不同用户对同一项目可能有不同的看法,因此在完成对用
户的推荐时,要结合多种推荐方式给予不同的推荐结果,然后将这些推荐结果按
照一定比例进行整合,进行分段展示并附上其推荐理由供用户参考,最后推荐给
用户。 多种推荐结果混合在一起。
显式:例如,用户的先前评级
隐式:例如,浏览记录
最难的部分:
总体的思路围绕着深度学习模型构建的基本步骤制定,主要包括训练之前的准备工作和正式训练过程。具体为通过将音频信号和歌词信息矢量化,将两者的矢量化数据作为深度学习模型的输入,通过训练提取音频和歌词特征,根据对象的不同,可以分别得到用户特征向量(即用户的兴趣特征)和项目特征向量(即音乐特征向量),然后计算用户特征和项目特征的相似度,生成候选集,在候选集中以TopN的方式为用户生成推荐列表,最后为用户推荐喜欢的音乐。
以下略。
2.吉林建筑大学:基于深度学习和协同过滤的音乐推荐系统
Kai等提出利用卷积神经网络和改进后的自动编码器挖掘隐式规则,再融合协同过滤推荐模型,成功解决了评分矩阵的高稀疏性带来的问题。而针对解决冷启动问题,Zhong等人提出了一种简单有效的卷积神经网络(MCRN),这种卷积神经网络用可以学习音乐的音频特征,通过傅里叶变换将音频转换成“频谱图”,通过频谱图进行训练学习,有效地从频谱中提取音乐特征,证明了音乐推荐分类网络在音乐频谱分类上具有更高的精度。
Zhao 等人通过获取音乐的长期记忆以及上下文内容来训练一个长短时记忆网
络,最后生成音乐推荐列表,通过实验证明了循环神经网络的可行性。Zheng
等人通过加入注意力机制优化循环神经网络模型存在的梯度消失问题。