transform代码讲解

转载并翻译:http://nlp.seas.harvard.edu/2018/04/03/attention.html

去年,《Attention is All You Need》中的变形金刚一直萦绕在很多人的脑海中。除了显着提高翻译质量之外,它还为许多其他 NLP 任务提供了新的架构。论文本身写得很清楚,但传统观点认为正确实施是相当困难的。

在这篇文章中,我以逐行实现的形式展示了论文的“带注释”版本。我重新排序并删除了原始论文中的一些部分,并在全文中添加了评论。本文档本身是一个工作笔记本,并且应该是一个完全可用的实现。总共有 400 行库代码,可以在 4 个 GPU 上每秒处理 27,000 个令牌。

要继续操作,您首先需要安装 PyTorch。完整的笔记本也可以在 github或带有免费 GPU 的 Google Colab上找到。

请注意,这仅仅是研究人员和感兴趣的开发人员的起点。这里的代码很大程度上基于我们的OpenNMT包。(如果有帮助,请随意引用。)有关模型的其他全方位服务实现,请查看 Tensor2Tensor (tensorflow) 和 Sockeye (mxnet)。

预赛

# !pip install http://download.pytorch.org/whl/cu80/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl numpy matplotlib spacy torchtext seaborn 
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy, time
from torch.autograd import Variable
import matplotlib.pyplot as plt
import seaborn
seaborn.set_context(context="talk")
%matplotlib inline

背景

减少顺序计算的目标也构成了扩展神经 GPU、ByteNet 和 ConvS2S 的基础,所有这些都使用卷积神经网络作为基本构建块,并行计算所有输入和输出位置的隐藏表示。在这些模型中,关联来自两个任意输入或输出位置的信号所需的操作数量随着位置之间的距离而增加,对于 ConvS2S 呈线性增长,对于 ByteNet 呈对数增长。这使得学习远距离位置之间的依赖关系变得更加困难。在 Transformer 中,这被减少到恒定数量的操作,尽管由于平均注意力加权位置而导致有效分辨率降低,我们用多头注意力来抵消这种影响。

自注意力(有时称为内部注意力)是一种将单个序列的不同位置相关联的注意力机制,以便计算序列的表示。自注意力已成功应用于各种任务,包括阅读理解、抽象概括、文本蕴涵和学习任务无关的句子表示。端到端记忆网络基于循环注意机制而不是序列对齐循环,并且已被证明在简单语言问答和语言建模任务上表现良好。

然而,据我们所知,Transformer 是第一个完全依赖自注意力来计算其输入和输出表示而不使用序列对齐 RNN 或卷积的转换模型。

模型架构

大多数竞争性神经序列转导模型都具有编码器-解码器结构(引用)。这里,编码器映射符号表示的输入序列(X1,……,Xn)到一系列连续表示z=(z1,……,zn)。给定z,解码器然后生成输出序列(y1,……,y米)符号一次一个元素。在每个步骤中,模型都是自回归的 (引用),在生成下一个时将先前生成的符号用作附加输入。

class EncoderDecoder(nn.Module):
    """
    A standard Encoder-Decoder architecture. Base for this and many 
    other models.
    """
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(EncoderDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator
        
    def forward(self, src, tgt, src_mask, tgt_mask):
        "Take in and process masked src and target sequences."
        return self.decode(self.encode(src, src_mask), src_mask,
                            tgt, tgt_mask)
    
    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)
    
    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
class Generator(nn.Module):
    "Define standard linear + softmax generation step."
    def __init__(self, d_model, vocab):
        super(Generator, self).__init__()
        self.proj = nn.Linear(d_model, vocab)

    def forward(self, x):
        return F.log_softmax(self.proj(x), dim=-1)

Transformer 遵循这一整体架构,对编码器和解码器使用堆叠自注意力和逐点、全连接层,分别如图 1 的左半部分和右半部分所示。

image-20230905155117882

编码器和解码器堆栈

编码器

编码器由堆栈组成6个相同的层。

def clones(module, N):
    "Produce N identical layers."
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
    "Core encoder is a stack of N layers"
    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)
        
    def forward(self, x, mask):
        "Pass the input (and mask) through each layer in turn."
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)

我们在两个子层周围 采用残差连接(引用) ,然后进行层归一化(引用)

class LayerNorm(nn.Module):
    "Construct a layernorm module (See citation for details)."
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

That is, the output of each sub-layer is LayerNorm ⁡ ( x + Sublayer ⁡ ( x ) ) , \operatorname{La\text{yer}Norm}(x+\operatorname{Sublayer}(x)), LayerNorm(x+Sublayer(x)),, where Sublayer(x) is the function implemented by the sub-layer itself. We apply dropout (cite) to the output of each sub-layer, before it is added to the sub-layer input and normalized.

To facilitate these residual connections, all sub-layers in the model, as well as the embedding layers, produce outputs of dimension d m o d e l = 512 d_{model}=512 dmodel=512

class SublayerConnection(nn.Module):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """
    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        "Apply residual connection to any sublayer with the same size."
        return x + self.dropout(sublayer(self.norm(x)))

每层有两个子层。第一个是多头自注意力机制,第二个是简单的位置级全连接前馈网络。

class EncoderLayer(nn.Module):
    "Encoder is made up of self-attn and feed forward (defined below)"
    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 2)
        self.size = size

    def forward(self, x, mask):
        "Follow Figure 1 (left) for connections."
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        return self.sublayer[1](x, self.feed_forward)

Decoder

The decoder is also composed of a stack of N=6 identical layers.

class Decoder(nn.Module):
    "Generic N layer decoder with masking."
    def __init__(self, layer, N):
        super(Decoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)
        
    def forward(self, x, memory, src_mask, tgt_mask):
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        return self.norm(x)

除了每个编码器层中的两个子层之外,解码器还插入第三个子层,该子层对编码器堆栈的输出执行多头注意力。与编码器类似,我们在每个子层周围采用残差连接,然后进行层归一化。

class DecoderLayer(nn.Module):
    "Decoder is made of self-attn, src-attn, and feed forward (defined below)"
    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3)
 
    def forward(self, x, memory, src_mask, tgt_mask):
        "Follow Figure 1 (right) for connections."
        m = memory
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
        return self.sublayer[2](x, self.feed_forward)

我们还修改了解码器堆栈中的自注意力子层,以防止位置关注后续位置。这种掩蔽与输出嵌入偏移一个位置的事实相结合,确保了位置的预测我我只能依赖于小于位置的已知输出我我。

def subsequent_mask(size):
    "Mask out subsequent positions."
    attn_shape = (1, size, size)
    subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
    return torch.from_numpy(subsequent_mask) == 0

注意掩码下方显示了每个 tgt 单词(行)允许查看的位置(列)。在训练过程中,单词会被屏蔽以关注未来的单词。

注意力

注意力函数可以描述为将查询和一组键值对映射到输出,其中查询、键、值和输出都是向量。输出被计算为值的加权和,其中分配给每个值的权重是由查询与相应键的兼容性函数计算的。

我们将我们的特别注意力称为“缩放点积注意力”。输入由查询和维度键组成dk和维度值dv。我们计算查询与所有键的点积,将每个除以 d k \sqrt d_k d k,并应用 softmax 函数来获取值的权重。

image-20230905155945758

在实践中,我们同时计算一组查询的注意力函数,并将其打包成一个矩阵问问。键和值也一起打包成矩阵K和V。我们将输出矩阵计算为

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q,K,V)=\text{softmax}(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V

def attention(query, key, value, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) \
             / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = F.softmax(scores, dim = -1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn

两种最常用的注意力函数是加性注意力 (引用)和点积(乘性)注意力。点积注意力与我们的算法相同,除了缩放因子1√dk1��。附加注意力使用具有单个隐藏层的前馈网络来计算兼容性函数。虽然两者在理论复杂性上相似,但点积注意力在实践中更快、更节省空间,因为它可以使用高度优化的矩阵乘法代码来实现。

image-20230905160416456

image-20230905160440853

class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)
        
    def forward(self, query, key, value, mask=None):
        "Implements Figure 2"
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)
        
        # 1) Do all the linear projections in batch from d_model => h x d_k 
        query, key, value = \
            [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]
        
        # 2) Apply attention on all the projected vectors in batch. 
        x, self.attn = attention(query, key, value, mask=mask, 
                                 dropout=self.dropout)
        
        # 3) "Concat" using a view and apply a final linear. 
        x = x.transpose(1, 2).contiguous() \
             .view(nbatches, -1, self.h * self.d_k)
        return self.linears[-1](x)

注意力在我们模型中的应用

Transformer 以三种不同的方式使用多头注意力:1)在“编码器-解码器注意力”层中,查询来自前一个解码器层,内存键和值来自编码器的输出。这允许解码器中的每个位置都参与输入序列中的所有位置。这模仿了序列到序列模型中典型的编码器-解码器注意机制,例如 (引用)

2)编码器包含自注意力层。在自注意力层中,所有键、值和查询都来自同一位置,在本例中是编码器中前一层的输出。编码器中的每个位置可以关注编码器上一层中的所有位置。

3)类似地,解码器中的自注意力层允许解码器中的每个位置关注解码器中直到并包括该位置的所有位置。我们需要防止解码器中的左向信息流以保留自回归属性。我们通过屏蔽(设置为-无穷大-无穷大)softmax 输入中对应于非法连接的所有值。

位置式前馈网络

除了注意力子层之外,我们的编码器和解码器中的每个层都包含一个完全连接的前馈网络,该网络单独且相同地应用于每个位置。这由两个线性变换组成,中间有一个 ReLU 激活。

F F N ( x ) = max ⁡ ( 0 , x W 1 + b 1 ) W 2 + b 2 \mathrm{FFN}(x)=\max(0,xW_1+b_1)W_2+b_2 FFN(x)=max(0,xW1+b1)W2+b2

虽然不同位置的线性变换是相同的,但它们在层与层之间使用不同的参数。另一种描述方式是内核大小为 1 的两个卷积。输入和输出的维度为d模型=第512章�模型=第512章,内层有维数dFF=2048���=2048。

class PositionwiseFeedForward(nn.Module):
    "Implements FFN equation."
    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(F.relu(self.w_1(x))))

嵌入和 Softmax

与其他序列转导模型类似,我们使用学习嵌入将输入标记和输出标记转换为维度向量 d模型。我们还使用通常学习的线性变换和 softmax 函数将解码器输出转换为预测的下一个令牌概率。在我们的模型中,我们在两个嵌入层和 pre-softmax 线性变换之间共享相同的权重矩阵,类似于 (引用)。在嵌入层中,我们将这些权重乘以√d模型。

class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(vocab, d_model)
        self.d_model = d_model

    def forward(self, x):
        return self.lut(x) * math.sqrt(self.d_model)

位置编码

由于我们的模型不包含递归和卷积,为了使模型能够利用序列的顺序,我们必须注入一些有关序列中标记的相对或绝对位置的信息。为此,我们将“位置编码”添加到编码器和解码器堆栈底部的输入嵌入中。位置编码具有相同的维度 d模型作为嵌入,以便将两者相加。位置编码有多种选择,有学习的和固定的 (引用)

image-20230905160845579

class PositionalEncoding(nn.Module):
    "Implement the PE function."
    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) *
                             -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)
        
    def forward(self, x):
        x = x + Variable(self.pe[:, :x.size(1)], 
                         requires_grad=False)
        return self.dropout(x)

下面的位置编码将根据位置添加正弦波。每个维度的波的频率和偏移量都不同。

plt.figure(figsize=(15, 5))
pe = PositionalEncoding(20, 0)
y = pe.forward(Variable(torch.zeros(1, 100, 20)))
plt.plot(np.arange(100), y[0, :, 4:8].data.numpy())
plt.legend(["dim %d"%p for p in [4,5,6,7]])
None

image-20230905161253007

我们还尝试使用学习的位置嵌入 (引用)来代替,发现这两个版本产生几乎相同的结果。我们选择正弦版本,因为它可以允许模型推断出比训练期间遇到的序列长度更长的序列长度。

完整模型

在这里,我们定义一个接受超参数并生成完整模型的函数。

def make_model(src_vocab, tgt_vocab, N=6, 
               d_model=512, d_ff=2048, h=8, dropout=0.1):
    "Helper: Construct a model from hyperparameters."
    c = copy.deepcopy
    attn = MultiHeadedAttention(h, d_model)
    ff = PositionwiseFeedForward(d_model, d_ff, dropout)
    position = PositionalEncoding(d_model, dropout)
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), 
                             c(ff), dropout), N),
        nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
        nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
        Generator(d_model, tgt_vocab))
    
    # This was important from their code. 
    # Initialize parameters with Glorot / fan_avg.
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform(p)
    return model
# Small example model.
tmp_model = make_model(10, 10, 2)
None

训练

本节描述我们模型的训练制度。

我们停下来快速介绍一下训练标准编码器解码器模型所需的一些工具。首先,我们定义一个批处理对象,其中包含用于训练的源句子和目标句子,以及构建掩码。

批次和掩蔽

class Batch:
    "Object for holding a batch of data with mask during training."
    def __init__(self, src, trg=None, pad=0):
        self.src = src
        self.src_mask = (src != pad).unsqueeze(-2)
        if trg is not None:
            self.trg = trg[:, :-1]
            self.trg_y = trg[:, 1:]
            self.trg_mask = \
                self.make_std_mask(self.trg, pad)
            self.ntokens = (self.trg_y != pad).data.sum()
    
    @staticmethod
    def make_std_mask(tgt, pad):
        "Create a mask to hide padding and future words."
        tgt_mask = (tgt != pad).unsqueeze(-2)
        tgt_mask = tgt_mask & Variable(
            subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data))
        return tgt_mask

接下来,我们创建一个通用的训练和评分函数来跟踪损失。我们传入一个通用损失计算函数,该函数还处理参数更新。

训练循环

def run_epoch(data_iter, model, loss_compute):
    "Standard Training and Logging Function"
    start = time.time()
    total_tokens = 0
    total_loss = 0
    tokens = 0
    for i, batch in enumerate(data_iter):
        out = model.forward(batch.src, batch.trg, 
                            batch.src_mask, batch.trg_mask)
        loss = loss_compute(out, batch.trg_y, batch.ntokens)
        total_loss += loss
        total_tokens += batch.ntokens
        tokens += batch.ntokens
        if i % 50 == 1:
            elapsed = time.time() - start
            print("Epoch Step: %d Loss: %f Tokens per Sec: %f" %
                    (i, loss / batch.ntokens, tokens / elapsed))
            start = time.time()
            tokens = 0
    return total_loss / total_tokens

训练数据和批处理

我们使用标准 WMT 2014 英语-德语数据集进行训练,该数据集包含约 450 万个句子对。句子使用字节对编码进行编码,该编码具有约 37000 个标记的共享源-目标词汇表。对于英语-法语,我们使用了更大的 WMT 2014 英语-法语数据集,其中包含 3600 万个句子,并将标记拆分为 32000 个单词片段词汇表。

句子对按大致序列长度分批在一起。每个训练批次包含一组句子对,其中包含大约 25000 个源标记和 25000 个目标标记。

我们将使用火炬文本进行批处理。这将在下面更详细地讨论。在这里,我们在 torchtext 函数中创建批次,以确保填充到最大批次大小的批次大小不超过阈值(如果我们有 8 个 GPU,则为 25000)。

global max_src_in_batch, max_tgt_in_batch
def batch_size_fn(new, count, sofar):
    "Keep augmenting batch and calculate total number of tokens + padding."
    global max_src_in_batch, max_tgt_in_batch
    if count == 1:
        max_src_in_batch = 0
        max_tgt_in_batch = 0
    max_src_in_batch = max(max_src_in_batch,  len(new.src))
    max_tgt_in_batch = max(max_tgt_in_batch,  len(new.trg) + 2)
    src_elements = count * max_src_in_batch
    tgt_elements = count * max_tgt_in_batch
    return max(src_elements, tgt_elements)

硬件和时间表

我们在一台配备 8 个 NVIDIA P100 GPU 的机器上训练我们的模型。对于我们使用整篇论文中描述的超参数的基本模型,每个训练步骤大约需要 0.4 秒。我们对基础模型进行了总计 100,000 步或 12 小时的训练。对于我们的大型模型,步长时间为 1.0 秒。大模型接受了 300,000 步(3.5 天)的训练。

image-20230905161526082

class NoamOpt:
    "Optim wrapper that implements rate."
    def __init__(self, model_size, factor, warmup, optimizer):
        self.optimizer = optimizer
        self._step = 0
        self.warmup = warmup
        self.factor = factor
        self.model_size = model_size
        self._rate = 0
        
    def step(self):
        "Update parameters and rate"
        self._step += 1
        rate = self.rate()
        for p in self.optimizer.param_groups:
            p['lr'] = rate
        self._rate = rate
        self.optimizer.step()
        
    def rate(self, step = None):
        "Implement `lrate` above"
        if step is None:
            step = self._step
        return self.factor * \
            (self.model_size ** (-0.5) *
            min(step ** (-0.5), step * self.warmup ** (-1.5)))
        
def get_std_opt(model):
    return NoamOpt(model.src_embed[0].d_model, 2, 4000,
            torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))

正则化

标签平滑

在训练期间,我们采用了值的标签平滑ε=0.1 (引用)。这会降低模型的困惑度,因为模型会变得更加不确定,但会提高准确性和 BLEU 分数。

我们使用 KL div 损失来实现标签平滑。我们不使用单热目标分布,而是创建一种分布,其中confidence正确的单词和其余的smoothing单词分布在整个词汇表中

class LabelSmoothing(nn.Module):
    "Implement label smoothing."
    def __init__(self, size, padding_idx, smoothing=0.0):
        super(LabelSmoothing, self).__init__()
        self.criterion = nn.KLDivLoss(size_average=False)
        self.padding_idx = padding_idx
        self.confidence = 1.0 - smoothing
        self.smoothing = smoothing
        self.size = size
        self.true_dist = None
        
    def forward(self, x, target):
        assert x.size(1) == self.size
        true_dist = x.data.clone()
        true_dist.fill_(self.smoothing / (self.size - 2))
        true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
        true_dist[:, self.padding_idx] = 0
        mask = torch.nonzero(target.data == self.padding_idx)
        if mask.dim() > 0:
            true_dist.index_fill_(0, mask.squeeze(), 0.0)
        self.true_dist = true_dist
        return self.criterion(x, Variable(true_dist, requires_grad=False))

在这里我们可以看到一个例子,说明如何根据置信度将质量分配给单词。

# Example of label smoothing.
crit = LabelSmoothing(5, 0, 0.4)
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
                             [0, 0.2, 0.7, 0.1, 0], 
                             [0, 0.2, 0.7, 0.1, 0]])
v = crit(Variable(predict.log()), 
         Variable(torch.LongTensor([2, 1, 0])))

# Show the target distributions expected by the system.
plt.imshow(crit.true_dist)
None

image-20230905161735430

如果模型对给定的选择非常有信心,标签平滑实际上会开始惩罚模型。

crit = LabelSmoothing(5, 0, 0.1)
def loss(x):
    d = x + 3 * 1
    predict = torch.FloatTensor([[0, x / d, 1 / d, 1 / d, 1 / d],
                                 ])
    #print(predict)
    return crit(Variable(predict.log()),
                 Variable(torch.LongTensor([1]))).data[0]
plt.plot(np.arange(1, 100), [loss(x) for x in range(1, 100)])
None

ch.LongTensor([2, 1, 0])))

Show the target distributions expected by the system.

plt.imshow(crit.true_dist)
None


[外链图片转存中...(img-RNqCCacV-1694005120781)]

*如果模型对给定的选择非常有信心,标签平滑实际上会开始惩罚模型。*

```python
crit = LabelSmoothing(5, 0, 0.1)
def loss(x):
    d = x + 3 * 1
    predict = torch.FloatTensor([[0, x / d, 1 / d, 1 / d, 1 / d],
                                 ])
    #print(predict)
    return crit(Variable(predict.log()),
                 Variable(torch.LongTensor([1]))).data[0]
plt.plot(np.arange(1, 100), [loss(x) for x in range(1, 100)])
None

image-20230905161753741

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值