题目概述
求对于某一条无向图中的边 (x,y,z) ,至少需要多少次操作可以保证该边一定出现在这个无向图的最小生成树中。一次单独的操作是指:先选择一条图中的边 (X,Y,Z) ,再把图中除了这条边以外的边,每一条的权值都减少 1 。
解题报告
好强的题QAQ,首先我们先分析如何才能让某条边必定出现在最小生成树中。考虑Kruskal的过程,发现一条边
然后再分析题目给的操作,发现我们可以看做选一条边让其边 +1 !所以一条边 (X,Y,Z),Z<z 需要 z−Z+1 次操作才能不在 (x,y,z) 前选择。
那么我们就要用最少的代价使得 x,y 不连通 → 最小割。
示例程序
#include<cstdio>
#include<cstring>
#include<algorithm>
#define fr first
#define sc second
#define mp make_pair
using namespace std;
const int maxn=500,maxm=800,maxe=maxm<<2;
int n,m,ID,x[maxm+5],y[maxm+5],z[maxm+5];
int E,lnk[maxn+5],son[maxe+5],nxt[maxe+5];pair<int,int> e[maxe+5];
int que[maxn+5],dis[maxn+5],ti,vis[maxn+5],cur[maxn+5];
inline void Add(int x,int y,int z)
{
son[E]=y;nxt[E]=lnk[x];e[E]=mp(0,z);lnk[x]=E++;
son[E]=x;nxt[E]=lnk[y];e[E]=mp(0,0);lnk[y]=E++;
}
inline bool Bfs(int s,int t)
{
int Head=0,Tail=0;que[++Tail]=s;vis[s]=++ti;dis[s]=0;
while (Head!=Tail)
for (int x=que[++Head],j=lnk[x];~j;j=nxt[j]) if (vis[son[j]]<ti)
if (e[j].fr<e[j].sc) que[++Tail]=son[j],vis[son[j]]=ti,dis[son[j]]=dis[x]+1;
return memcpy(cur,lnk,sizeof(cur)),vis[t]==ti;
}
int Dfs(int x,int t,int MIN=2e9)
{
if (x==t||!MIN) return MIN;
int f=0,now;
for (int &j=cur[x];~j;j=nxt[j]) if (dis[x]+1==dis[son[j]])
if (now=Dfs(son[j],t,min(MIN,e[j].sc-e[j].fr)))
{
f+=now;e[j].fr+=now;e[j^1].fr-=now;
if (!(MIN-=now)) break;
}
return f;
}
inline int Dinic(int s,int t) {int MAX=0;while (Bfs(s,t)) MAX+=Dfs(s,t);return MAX;}
int main()
{
freopen("program.in","r",stdin);
freopen("program.out","w",stdout);
scanf("%d%d%d",&n,&m,&ID);
for (int i=1;i<=m;i++) scanf("%d%d%d",&x[i],&y[i],&z[i]);
E=0;memset(lnk,255,sizeof(lnk));
for (int i=1;i<=m;i++) if (i!=ID&&z[i]<=z[ID])
Add(x[i],y[i],z[ID]-z[i]+1),Add(y[i],x[i],z[ID]-z[i]+1);
return printf("%d\n",Dinic(x[ID],y[ID])),0;
}