🌞欢迎来到AI+生物医学的世界
🌈博客主页:卿云阁💌欢迎关注🎉点赞👍收藏⭐️留言📝
🌟本文由卿云阁原创!
🌠本阶段属于练气阶段,希望各位仙友顺利完成突破
📆首发时间:🌹2024年3月22日🌹
✉️希望可以和大家一起完成进阶之路!
🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!
目录
分子特征提取
特征提取
研究现状
FP-GNN
链接: https://pan.baidu.com/s/1LWBoCnfcVzGZnEkGprBxYQ?pwd=wyy8
提取码: wyy8
给定一个分子,模型会接受这个分子几个方面的信息。
分子图注意网络:分子图的信息,通过图注意网络抓取重要信息,绘制成一个向量。
先验知识神经网络( RNN):使用了三个混合指纹,代表不同的信息。
自适配深度注意力神经网络:把两个信息进行融合
算法评估,在13个公共数据集上进行测试,BASE是一个抗衰老的靶点,HIV是一个偏向于细胞感染的。
Mixed FP中蕴藏的信息更能与分子图的信息互补
模型抗噪音能力
模型的可解释性
CDK9抑制剂的发现
Ligand- and structure-based identification of novel CDK9 inhibitors for the potential treatment of leukemia![]()
多任务设计
HiGNN
图神经网络通用框架 —— MPNN消息传递神经网络
分子片段
任何化学分子都可以根据16种可合成的化学键环境,断开可合成的单键,产生分子片段。
特征初始化
HiGNN将额外的药效团、分子骨架信息编码进入分子图
评测结果:
分类任务
回归任务
消融实验
注意力分数可视化
可解释性
【bioinformation 12】基于深度学习的分子性质预测算法研究及应用
于 2024-03-22 14:25:31 首次发布