Lecture 9(Preparation):机器学习模型的可解释性(Explainable ML)

目录

① Local Explanation: Explain the Decision

② Global Explanation

Outlook


我们需要Explainable ML的一些理由如下:

  • Loan issuers are required by law to explain theirmodels.
  • Medical diagnosis model is responsible for humanlife. It can not be a black box.
  • If a modelis used at the court, we must make surethe model behaves in a nondiscriminatory manner.
  • If a self-driving car suddenly acts abnormally, we need to explain why.
  • We can improve ML model basedon explanation.——离这个目标还有很长的一段距离

Interpretable v.s. Powerful

  • Some models are intrinsically interpretable. But not very powerful. For example, linear model (from weights, you know theimportance of features).
  • Deep network is difficult to interpretable. Deep networksare black boxes ... but powerful than a linear model.

Goal of Explainable ML:

explanation的目标非常不明确。什么是好的explanation?Make people (yourcustomers, your boss, yourself) comfortable.(李宏毅老师的看法)

Explainable的Machine Learning分成两大类:

① Local Explanation: Explain the Decision

方法一:用方框遮住图片中不同的位置。如果遮住某块地方,network的输出结果发生很大改变,那么说明这块地方是重要特征。

方法二:计算gradient

        如何把Saliency Map画的更好——SmoothGrad

        Limitation: Gradient Saturation

        Gradient cannot always reflect importance of component.

        比如下面的例子,大象鼻子长度较短的时候,改变鼻子的长度会对判断它是否为大象的结果造成较大影响,但当鼻子长到一定程度的时候,改变一点点鼻子的长度并不会对判断结果造成影响,但是这时候∂elephant/∂length=0并不能说明鼻子长度不是判断结果是否为大象的重要依据。

        改进方法:Integrated gradient (IG)

上面是看输入的哪些部分比较重要,接下来讨论的是给network一个输入的时候,network如何去处理这个输入。

How a network processes the input data?

        ① Visualization

        ② Probing

        用“探针”插入network,去看发生了什么事情

        探针有种种的可能性,它可以是一个classifier,如下例:

        探针也可以是一个语音合成的模型:

② Global Explanation

Global Explanation不是针对特定的某一张照片进行分析。

如果是做分类问题,判断图片是否为猫:把训练好的模型拿出来,根据模型里面的参数去检查对这个network而言,到底一只猫长什么样子。

下面以CNN为例,它是一个image classifier。CNN的每一个filter都会侦测一个pattern。那我们可以训练一张图片(不是database中的图片),使得某一个filter对应输出的feature map的值最大,这张image就反映了这个filter侦测的是什么样的pattern:

如果想看上面的image classifier最终的output,此时需要训练一张图片X,X可以让某一个类别的分数越高越好,下面是一个手写数字辨识的例子:

Adversarial Attack(对抗攻击),即对输入样本故意添加一些人无法察觉的细微的干扰,导致模型以高置信度给出一个错误的输出。在接下来的lecture9和lecture10的正课部分讲解。

如上图,如果只是单纯的找一张image,让这张image对应到某一个数字的信心分数越高越好,只能找到一堆杂讯。在寻找image的过程中,做optimization的时候,要加上很多的限制,找出来的image才会比较接近我们想看到的东西:

要真的得到很像output对应种类中物体的图片X,要加非常多的限制,下面是文献中得到的结果:

对于Global Explanation,如果真的要看到非常清晰的图片,有一个方法是使用generator:

Outlook

Explainable的Machine Learning,除了上面的两个主流技术,还有很多其他的技术。

下面再介绍一个技术:Using an interpretable model to mimic thebehavior of an uninterpretable model.

用一个比较简单的模型,去模仿复杂模型的行为。如果简单的模型可以模仿复杂模型的行为,那么去分析简单的模型,也许就可以知道复杂的模型在做什么。

不过有很多的问题是neural network能做到而linear model做不到的事情,那我们可以用linear model去模仿黑盒子的部分行为,去解释这部分行为背后的原因:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值