【深度学习环境搭建】python+anaconda+cuda+pytorch
1.下载pycharm
进入pycharm的官网
https://www.jetbrains.com.cn/en-us/pycharm/download/?section=windows
下载pycharm,可以选择社区版,是免费的
2.安装anaconda
anaconda介绍
Anaconda集成了大多数常用的科学计算的包,比如:numpy、pandas等,适合深度学习开发。
Anaconda会自动安装一个基本的python,不用再去安装python,也不用手动再去安装一些别的科学计算的包了。
Anaconda可以创建使用和管理多个不同的Python版本:比如想要新建一个新框架或者使用不同于Anoconda装的基本Python版本,Anoconda就可以实现同时多个python版本的管理。
下载anaconda
在清华镜像官网下载:
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
这里下载的速度快。选择对应操作系统的版本进行下载安装。
验证
下载完成后
cmd输入conda --version,出现对应的版本号即安装成功
3.创建虚拟环境
终端输入:
conda create -n yolov8 python=3.8
其中-n是name的缩写,(yolov8可以改成自己命名的环境名称)
创建完成后输入:
conda env list
查看是否创建成功该虚拟环境
遇到的问题:创建环境时候遇到anaconda 报错之Solving environment: failed
原因:镜像的问题,修改.condarc中的镜像
简单粗暴将文件内容里面全部替换成这个:
channels:
- defaults
show_channel_urls: true
channel_alias: https://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
然后再创建虚拟环境就可以了
参考文章:https://www.cnblogs.com/johnyang/p/13417374.html
激活环境
conda activate yolov8
终端输入 conda activate yolov8(这里是你的环境名称,我的叫yolov8)
前面的base变成你所激活的环境名称即可
4. 安装cuda
先查看电脑支持的cuda最高版本以及驱动最高版本,再下载小于或者等于该版本的cuda
终端输入nvidia-smi,cuda版本要小于12.3
下载CUDA
CUDA下载链接:https://developer.nvidia.com/cuda-toolkit-archive
这里选择的版本不能高于你的显卡驱动里面那个版本号,这里我下载了11.8的。
安装完成后配置环境变量
这里我的路径都是选择默认安装路径的。
上面两个是自己配好的,如果没有手动添加。
如果你也是默认路径,只需要修改对应的版本号即可。
添加变量:
变量名:CUDA_PATH
变量值:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
变量名:CUDA_PATH_V11_8
变量值:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
变量名:NVCUDASAMPLES_ROOT
变量值:C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.8
变量名:NVCUDASAMPLES11_8_ROOT
变量值:C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.8
验证
验证cuda是否安装成功:输入nvcc - V ,安装成功会有以下安装的版本信息
5. 下载cuDNN
cuDNN介绍
cuDNN(CUDA Deep Neural Network library):是NVIDIA打造的针对深度神经网络的加速库,是一个用于深层神经网络的GPU加速库。如果你要用GPU训练模型,cuDNN不是必须的,但是一般会采用这个加速库,它可以加速你的训练。
cuda和cuDNN的关系参考:http://t.csdnimg.cn/tAQpY
下载cuDNN:
(1)需要注册一个账号,如果没有是不能下载cudnn的。
下载链接:https://developer.nvidia.com/rdp/cudnn-download
(2)根据自己安装的cuda版本选择cudnn,这里我们安装的是11.8,所以下载11.8版本的cuDNN
11.8cuda对应的cuDNN的版本
解压到合适位置
然后打开文件,将这三个文件进行复制,粘贴到 cuda 安装位置中
打开cuda的安装位置
如果默认安装的话,你的cuda位置应该在C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
选择粘贴到该文件夹下,替换同名文件
配置环境变量
在环境变量中双击path,添加下面四个变量
将下面这些内容放在这个path中。就将替换后的 bin、include、lib以及libnvvp路径。版本号对应你下载的。
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\libnvvp
验证
进行cuDNN验证:
进入C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite目录下
在终端打开,
输入:
.\bandwidthTest.exe
.\deviceQuery.exe
出现Result = PASS则说明配置成功。
参考文章:http://t.csdnimg.cn/6VcH8
6.安装PyTorch
在刚才创建的虚拟环境下进行安装
进入Pytorch官网:https://pytorch.org/
选择对应的版本,复制下载链接,速度太慢后面可以加上清华源:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 -i https://pypi.tuna.tsinghua.edu.cn/simple
如果出现一堆warning和error,可以从以下两个方面考虑:
(1)是否翻墙,网络信号不好
解决方法:关掉外网即可
(2)安装的CUDA版本是否大于刚刚查看的CUDA版本号
解决方法:cuda版本和pytorch版本对应起来
等待pytorch安装完毕
此时你的pytorch版本的虚拟环境已经创建完毕
7. 在PyCharm中选择虚拟环境
到这里,你的pytorch的深度学习的虚拟环境就搭建好啦!
参考文章:http://t.csdnimg.cn/BRadE