【深度学习环境搭建】python+anaconda+cuda+pytorch

1.下载pycharm

进入pycharm的官网
https://www.jetbrains.com.cn/en-us/pycharm/download/?section=windows
下载pycharm,可以选择社区版,是免费的
在这里插入图片描述

2.安装anaconda

anaconda介绍
Anaconda集成了大多数常用的科学计算的包,比如:numpy、pandas等,适合深度学习开发。
Anaconda会自动安装一个基本的python,不用再去安装python,也不用手动再去安装一些别的科学计算的包了。
Anaconda可以创建使用和管理多个不同的Python版本:比如想要新建一个新框架或者使用不同于Anoconda装的基本Python版本,Anoconda就可以实现同时多个python版本的管理。

下载anaconda
在清华镜像官网下载:
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
这里下载的速度快。选择对应操作系统的版本进行下载安装。
在这里插入图片描述

验证
下载完成后
cmd输入conda --version,出现对应的版本号即安装成功
在这里插入图片描述

3.创建虚拟环境

终端输入:

conda create -n yolov8 python=3.8

其中-n是name的缩写,(yolov8可以改成自己命名的环境名称)
创建完成后输入:

conda env list

查看是否创建成功该虚拟环境
在这里插入图片描述
遇到的问题:创建环境时候遇到anaconda 报错之Solving environment: failed
原因:镜像的问题,修改.condarc中的镜像
在这里插入图片描述
简单粗暴将文件内容里面全部替换成这个:

channels:
  - defaults
show_channel_urls: true
channel_alias: https://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

然后再创建虚拟环境就可以了
参考文章:https://www.cnblogs.com/johnyang/p/13417374.html
激活环境

conda activate yolov8

终端输入 conda activate yolov8(这里是你的环境名称,我的叫yolov8)
前面的base变成你所激活的环境名称即可
在这里插入图片描述

在这里插入图片描述

4. 安装cuda

先查看电脑支持的cuda最高版本以及驱动最高版本,再下载小于或者等于该版本的cuda
终端输入nvidia-smi,cuda版本要小于12.3
在这里插入图片描述
下载CUDA
CUDA下载链接:https://developer.nvidia.com/cuda-toolkit-archive
这里选择的版本不能高于你的显卡驱动里面那个版本号,这里我下载了11.8的。
在这里插入图片描述
在这里插入图片描述
安装完成后配置环境变量
这里我的路径都是选择默认安装路径的。

上面两个是自己配好的,如果没有手动添加。
在这里插入图片描述
如果你也是默认路径,只需要修改对应的版本号即可。
添加变量:

变量名:CUDA_PATH
变量值:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
变量名:CUDA_PATH_V11_8
变量值:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
变量名:NVCUDASAMPLES_ROOT
变量值:C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.8
变量名:NVCUDASAMPLES11_8_ROOT
变量值:C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.8

验证
验证cuda是否安装成功:输入nvcc - V ,安装成功会有以下安装的版本信息
在这里插入图片描述

5. 下载cuDNN

cuDNN介绍
cuDNN(CUDA Deep Neural Network library):是NVIDIA打造的针对深度神经网络的加速库,是一个用于深层神经网络的GPU加速库。如果你要用GPU训练模型,cuDNN不是必须的,但是一般会采用这个加速库,它可以加速你的训练。
cuda和cuDNN的关系参考:http://t.csdnimg.cn/tAQpY
下载cuDNN:
(1)需要注册一个账号,如果没有是不能下载cudnn的。
下载链接:https://developer.nvidia.com/rdp/cudnn-download
(2)根据自己安装的cuda版本选择cudnn,这里我们安装的是11.8,所以下载11.8版本的cuDNN

在这里插入图片描述

11.8cuda对应的cuDNN的版本
在这里插入图片描述
解压到合适位置
然后打开文件,将这三个文件进行复制,粘贴到 cuda 安装位置中
在这里插入图片描述
打开cuda的安装位置
如果默认安装的话,你的cuda位置应该在C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
选择粘贴到该文件夹下,替换同名文件
在这里插入图片描述

配置环境变量
在环境变量中双击path,添加下面四个变量
在这里插入图片描述
将下面这些内容放在这个path中。就将替换后的 bin、include、lib以及libnvvp路径。版本号对应你下载的。

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\libnvvp

验证
进行cuDNN验证:
进入C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite目录下
在终端打开,

输入:

.\bandwidthTest.exe
.\deviceQuery.exe

在这里插入图片描述
在这里插入图片描述
出现Result = PASS则说明配置成功。

参考文章:http://t.csdnimg.cn/6VcH8

6.安装PyTorch

在刚才创建的虚拟环境下进行安装
进入Pytorch官网:https://pytorch.org/
选择对应的版本,复制下载链接,速度太慢后面可以加上清华源:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述
在这里插入图片描述
如果出现一堆warning和error,可以从以下两个方面考虑:
(1)是否翻墙,网络信号不好
解决方法:关掉外网即可
(2)安装的CUDA版本是否大于刚刚查看的CUDA版本号
解决方法:cuda版本和pytorch版本对应起来

等待pytorch安装完毕
此时你的pytorch版本的虚拟环境已经创建完毕

7. 在PyCharm中选择虚拟环境

在这里插入图片描述
在这里插入图片描述

到这里,你的pytorch的深度学习的虚拟环境就搭建好啦!
参考文章:http://t.csdnimg.cn/BRadE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值