高等数学:第九章 重积分(2)三重积分的概念、应用,利用柱面坐标和球面坐标计算三重积分

§9.4  三重积分的概念及其计算法

一、三重积分的定义

是空间闭区域上的有界函数,将任意地分划成个小区域    

其中表示第个小区域,也表示它的体积。

在每个小区域上任取一点,

作乘积  

作和式  

记这个小区域直径的最大者,

若极限    存在,

则称此极限值为函数在区域上的三重积分,记作

,

即      

其中体积元素

自然地,体积元素在直角坐标系下也可记作成

二、三重积分的存在定理

若函数在区域上连续, 则三重积分存在。

特别指出:二重积分的一些术语、性质可相应地移植到三重积分。

三、三重积分的物理意义

如果表示某物体在处的质量密度,是该物体所占有的空间区域,且上连续,则和式 就是物体质量的近似值, 该和式当时的极限值就是该物体的质量

故       

特别地, 当时,

四、三重积分的计算法

假设积分区域的形状如下图所示

面上的投影区域为, 过上任意一点, 作平行于轴的直线穿过内部, 与边界曲面相交不多于两点。 亦即, 的边界曲面可分为上、下两片部分曲面。

 ,  

其中 , 上连续, 并且 

如何计算三重积分呢?

不妨先考虑特殊情况,则

即  

一般情况下,类似地有

显然积分只是把看作的函数在区间上对求定积分, 因此,其结果应是的函数, 记

那么  

如上图所示, 区域可表示为

从而 

综上讨论, 若积分区域可表示成

则  

这就是三重积分的计算公式, 它将三重积分化成先对积分变量, 次对,最后对三次积分

如果平行于  轴且穿过内部的直线与边界曲面的交点多于两个,可仿照二重积分计算中所采用的方法, 将剖分成若干个部分,(如),使在上的三重积分化为各部分区域( )上的三重积分,当然各部分区域 () 应适合对区域的要求。

例如,求,其中为  

将面将区域剖分成上下两个部分区域

则    

【例1】计算, 其中为球面及三坐标面所围成的位于第一卦限的立体。

解:(1)、画出立体的简图

(2)、找出立体在某坐标面上的投影区域并画出简图

面上的投影区域为 

(3)、确定另一积分变量的变化范围

在已知积分变量的变化范围为的情况下, 再确定另一积分变量的变化范围。 在内任取一点, 作一过此点且平行于轴的直线穿过区域, 则此直线与边界曲面的两交点之竖坐标即为的变化范围。

(4)、选择一种次序,化三重积分为三次积分






§9.5  利用柱面坐标和球面坐标计算三重积分

对于某些三重积分,由于积分区域和被积函数的特点,往往要利用柱面坐标和球面坐标来计算。

一、利用柱面坐标计算三重积分

1、柱面坐标

为空间的一点,该点在面上的投影为,点的极坐标为,则三个数称作点的柱面坐标。

规定的取值范围是

柱面坐标系的三组坐标面分别为

,即以轴为轴的圆柱面;

,即过轴的半平面;

,即与面平行的平面。

的直角坐标与柱面坐标之间有关系式

                                              (1)

2、三重积分在柱面坐标系中的计算公式

用三组坐标面,,,将分割成许多小区域,除了含的边界点的一些不规则小区域外,这种小闭区域都是柱体。

考察由各取得微小增量所成的柱体,该柱体是底面积为,高为的柱体,其体积为

这便是柱面坐标系下的体积元素, 并注意到(1)式有

        (2)

(2)式就是三重积分由直角坐标变量变换成柱面坐标变量的计算公式。

(2)式右端的三重积分计算,也可化为关于积分变量的三次积分,其积分限要由中的变化情况来确定。

3、用柱面坐标表示积分区域的方法

(1)、找出面上的投影区域, 并用极坐标变量表示之;

(2)、内任取一点, 过此点作平行于轴的直线穿过区域, 此直线与边界曲面的两交点之竖坐标( 将此竖坐标表示成的函数 )即为的变化范围。

【例1】求下述立体在柱面坐标下的表示形式

  球面与三坐标面所围成的立体且位于第一卦限内的部分。

  由锥面与平面所围成的立体。

面上的投影区域为 ,

其极坐标下的表示形式为    

的变化范围是      ,

即                      

故  

面上的投影区域为   ,

其极坐标下的表示形式为        

的变化范围是          

即                             

故  

【例2】用柱坐标计算三重积分,其中是球体位于第一卦限内的部分。

解: 

二、利用球坐标计算三重积分

1、球面坐标

如图所示,空间任意一点也可用三个数唯一表示。

其中:

 为原点到点的距离;

为有向线段轴正向所成夹角;

为从正轴来看自轴依逆时针方向转到有向线段的角度,而点是点面上的投影点。

规定的取值范围为

 , ,  

不难看出,的直角坐标与球面坐标间的关系为

                                      (3)

2、球面坐标系的特点

,是以原点为心的球面;

,是以原点为顶, 轴为轴的圆锥面;

,是过轴的半平面。

粗略地讲, 变量刻划点到原点的距离,即“远近”

变量刻划点在空间的上下位置,即“上下”

变量刻划点在水平面上的方位,即“水平面上方位”

3、三重积分在球面坐标系下的计算公式

用三组坐标面,将分划成许多小区域,考虑当各取微小增量  所形成的六面体,若忽略高阶无穷小,可将此六面体视为长方体,其体积近似值为

这就是球面坐标系下的体积元素

由直角坐标与球面坐标的关系式(3)有

  (4)

(4)式就是三重积分在球面坐标系下的计算公式。

(4)式右端的三重积分可化为关于积分变量的三次积分来实现其计算,当然,这需要将积分区域用球面坐标加以表示。

4、积分区域的球面坐标表示法

积分区域用球面坐标加以表示较复杂,一般需要参照的几何形状,并依据球坐标变量的特点来决定。

实际中经常遇到的积分区域是这样的

是一包围原点的立体, 其边界曲面是包围原点在内的封闭曲面,将其边界曲面方程化成球坐标方程,据球面坐标变量的特点有

例如:若是球体  ,  则的球坐标表示形式为

曲面的球坐标方程为

于是    

【例3】求曲面与曲面所围成的立体的体积。

解:的图形为

下面根据图形及球坐标变量的特点决定的球坐标表示式。

(1)、面的投影区域包围原点,故变化范围应为

(2)、可由轴转到锥面的侧面,而锥面的半顶角为,故的变化范围应为

(3)、 内任取一值, 作射线穿过,它与有两个交点,一个在原点处,另一个在曲面上,它们可分别用球坐标表示为 及 

因此,   

故  

也可以利用柱坐标来计算该立体的体积。




from: http://sxyd.sdut.edu.cn/gaoshu2/

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值