poj 2480

原创 2012年03月28日 17:56:49

设函数g(n) = gcd(i,n) (1<=i<=n),由积性函数的定义,g(n)=g(m1)*g(m2) (n=m1*m2 且 (m1, m2)= 1),所以g是积性函数。由具体数学上的结论,积性函数的和也是积性的。所以f(n) = ∑gcd(i, n)也是积性函数。由初等数论中的定理,如果f(n)是不恒为0的数论函数,n>1时 n=p1^a1*p2^a2*...*ps^as,那么f(n)是积性函数的充要条件是f(1)=1,及f(n) = f(p1^a1)*f(p2^a2)*...f(pr^ar)。所以只要求f(pi^ai)就好,如果d是n的一个约数,那么1<=i<=n中gcd(i,n) = d的个数是phi(n/d),即n/d的欧拉函数

f(pi^ai) =  Φ(pi^ai)+pi*Φ(pi^(ai-1))+pi^2*Φ(pi^(ai-2))+...+pi^(ai-1)* Φ(pi)+ pi^ai *Φ(1)

     = pi^(ai-1)*(pi-1) + pi*pi^(ai-2)*(pi-1)....+pi^ai

     =  pi^ai*(1+ai*(1-1/pi))

f(n) = p1^a1*p2^a2...*pr^ar*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*...

       =  n*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>

using namespace std;

typedef __int64 lint;


int main()
{
    lint n;
    while (scanf("%I64d", &n) != EOF) {
        lint i, sqr, p, a, ans;
        ans = n;
        sqr = floor(sqrt(n*1.0));
        for (i = 2; i <= sqr; ++i) {
            if (n%i == 0) {
                a = 0;
                p = i;
                while (n%p == 0) {
                    a++;
                    n /= p;
                }
                ans = ans + ans*a*(p-1)/p;
            }
        }
        if (n!=1) {
            ans = ans + ans*(n-1)/n;
        }
        printf("%I64d\n", ans);
    }
    return 0;
}


POJ 2480 Longge's problem 欧拉函数

题意: Given an integer N(1 题解: 公式:f(N)=∑x*φ(N/x),x | N (x是N的约数) 因为在1···N中,gcd(i,N) = x, 的个数的等于φ(...
  • Tsaid
  • Tsaid
  • 2012年03月25日 00:27
  • 1085

poj2480(欧拉函数,必须回顾的题)

欧拉函数的思想!!!! 刚开始写跪了,一直wa,太晚了,就只好先这样了 #include #include #include #include #define ll long long usin...

poj 2480 Longge's problem 积性函数性质+欧拉函数

题意: 求f(n)=∑gcd(i, N) 1 分析: f(n)是积性的数论上有证明,且f(n)=sigma{1 代码: //poj 2480 //sep9 /* f(pi^ai) = Φ(pi^ai...
  • sepNINE
  • sepNINE
  • 2015年06月03日 00:11
  • 733

POJ 2480 Longge's problem [ 求 Σgcd(i,n)(1<=i<=n) ] [欧拉函数]

题意:给定n(1 分析: 乍一看和欧拉函数没什么关系,但数论就是这样,处处联系。我们可以枚举i(1...

POJ 2480 Longge's problem 解题报告(欧拉函数 + 积性函数)

Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6914 ...
  • kbdwo
  • kbdwo
  • 2014年04月27日 08:58
  • 495

poj 2480 Longge's problem(积性函数 & 欧拉函数)

http://poj.org/problem?id=2480 大意:求解 ∑gcd(i, N) 1 对于最大公约数,它有这样的性质,gcd(n,m1*m2)=gcd(nm1)*gcd(n,m2)  ...

POJ2480 欧拉函数的应用

POJ 2480 欧拉函数的应用题目链接 乍一看和欧拉函数没什么关系,但数论就是这样,处处联系。我们可以枚举i(1...

poj 2480 (欧拉函数应用)

点击打开链接 //求SUM(gcd(i,n), 1

POJ 2480 Longge's Problem

积性函数的性质,同时,PHI(n/d)为1到n中与n的公约数为d的个数

POJ 2480 Longge's problem (欧拉函数+乘性函数)

Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7343   Accepted:...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 2480
举报原因:
原因补充:

(最多只允许输入30个字)