关闭

poj 2480

1668人阅读 评论(2) 收藏 举报
分类:

设函数g(n) = gcd(i,n) (1<=i<=n),由积性函数的定义,g(n)=g(m1)*g(m2) (n=m1*m2 且 (m1, m2)= 1),所以g是积性函数。由具体数学上的结论,积性函数的和也是积性的。所以f(n) = ∑gcd(i, n)也是积性函数。由初等数论中的定理,如果f(n)是不恒为0的数论函数,n>1时 n=p1^a1*p2^a2*...*ps^as,那么f(n)是积性函数的充要条件是f(1)=1,及f(n) = f(p1^a1)*f(p2^a2)*...f(pr^ar)。所以只要求f(pi^ai)就好,如果d是n的一个约数,那么1<=i<=n中gcd(i,n) = d的个数是phi(n/d),即n/d的欧拉函数

f(pi^ai) =  Φ(pi^ai)+pi*Φ(pi^(ai-1))+pi^2*Φ(pi^(ai-2))+...+pi^(ai-1)* Φ(pi)+ pi^ai *Φ(1)

     = pi^(ai-1)*(pi-1) + pi*pi^(ai-2)*(pi-1)....+pi^ai

     =  pi^ai*(1+ai*(1-1/pi))

f(n) = p1^a1*p2^a2...*pr^ar*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*...

       =  n*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>

using namespace std;

typedef __int64 lint;


int main()
{
    lint n;
    while (scanf("%I64d", &n) != EOF) {
        lint i, sqr, p, a, ans;
        ans = n;
        sqr = floor(sqrt(n*1.0));
        for (i = 2; i <= sqr; ++i) {
            if (n%i == 0) {
                a = 0;
                p = i;
                while (n%p == 0) {
                    a++;
                    n /= p;
                }
                ans = ans + ans*a*(p-1)/p;
            }
        }
        if (n!=1) {
            ans = ans + ans*(n-1)/n;
        }
        printf("%I64d\n", ans);
    }
    return 0;
}


3
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:102117次
    • 积分:1857
    • 等级:
    • 排名:千里之外
    • 原创:83篇
    • 转载:6篇
    • 译文:0篇
    • 评论:13条