白话空间统计二十一:密度分析(四)

本文通过图解方式介绍了核密度分析的基本原理,特别是无属性加权的核密度分析,并探讨了不同搜索半径对分析结果的影响。

白话空间统计系列断了好久了……虽然写了很多其他的文章,但是有同学问,还是系列性的文章效果比较好,当然这些文章大部分都能分开来读,没有啥前后联系,但是系列文章最大的特点就是能够形成知识体系,无论是对于写的,还是对于读的,都有很大的好处。

好了,继续写密度分析。密度分析是我写的白话空间统计里面最长的单篇了,正剧写到这里是第四篇,番外写了两篇,但是预计起码还有好几篇才能写完,有时候想,干脆就直接叫做白话密度分析好了……可以开一个大系列。

好了,闲话少说,进入正题。(关于密度分析其他的内容,请查阅以前的文章)。

前面说了很多基本原理,但是可能大家看完之后就一个感觉:懂的说懂的,看不懂的仍然看不懂……好吧,今天虾神照样用画图的方法来说说核密度的基本原理。

首先我们来看看不进行属性加权的核密度分析(仅仅使用空间信息进行核密度分析)。



针对一下两个参数(cell size和bandwidth),我们通过下面的图来对比一下:

数据:美国的城市(区)位置信息。

当搜索半径为2度(1度约108公里左右)的时候,生成的结果如下:明显的看出美国城区密度中心主要有下面几个:东部的纽约城市圈、中部的芝加哥城市圈、西部的旧金山城市圈和洛杉矶城市圈。



当我们的搜索半径扩大到5度(500多公里)的时候,东部的纽约城市圈和芝加哥城市圈还能勉强分开,但是加州的旧金山城市圈和洛杉矶城市圈就已经连成一体了。



当我们把搜索半径扩大到10度(1000多公里)的时候,美国整体就变成了两个热区:东部和西部。

结论:当我们的搜索半径越大的时候,所能表现出来的结论越粗略和抽象,越能表现出整体性的趋势。而搜索半径越小的时候,细节程度越高,越能显示出局部性的趋势。

如何有效的选择搜索半径,就需要看你研究的空间尺度了,这是一个仁者见仁智者见智的过程。

以为上面主要讲的是无属性加权的,下一节继续讲属性加权的密度分析。

待续未完。

### 关于地理加权回归的学习资源 #### 地理加权回归简介 地理加权回归(Geographically Weighted Regression, GWR)是一种用于处理空间异质性的统计方法,它允许局部估计而不是全局单一的回归系数。这种方法特别适用于研究那些随地理位置而变化的关系模式。 #### 学习资料推荐 对于希望深入了解GWR理论及其实践应用的人士来说,存在多种途径获取高质量的学习材料: - **书籍**: 《Applied Spatial Data Analysis with R》涵盖了广泛的空间数据分析技术,其中包括详细的章节介绍如何利用R语言实现GWR模型[^1]。 - **在线课程**: Coursera平台提供了名为“Spatial Statistics and GIS”的专项课程系列,该课程不仅讲解了基础概念还涉及到了高级主题如GWR的应用场景[^2]。 - **学术论文**: 可以查阅发表在国际知名期刊上的文章,例如Journal of Geographical Systems上的一篇综述性文献全面总结了近年来有关GWR的发展趋势和技术进步[^3]。 #### 实际操作指南 为了帮助初学者更好地掌握这一技能,在实际项目中运用所学知识至关重要。以下是几个具体的指导建议: ##### 使用Stata进行地理加权回归的操作流程 当采用Stata作为主要分析工具时,可以按照以下方式执行GWR建模过程: ```stata * 加载必要的库文件并设置工作路径 * ssc install spregress cd "C:\path\to\your\data" * 导入数据集 * use mydata.dta, clear * 执行地理加权回归命令 * spregress y x1 x2 ..., gwr kernel(gaussian) bandwidth(optimized) * 查看结果输出 * estat summarize predict double pred_y, xb ``` 上述代码片段展示了怎样导入外部数据源以及调用特定函数来进行标准高斯核下的最优带宽选择,并最终预测目标变量值。 ##### Python环境下实施时空地理加权回归(GTWR) 随着Python生态系统的日益成熟和完善,越来越多的研究者倾向于借助其强大的计算能力和丰富的第三方包支持开展复杂的数据挖掘任务。下面给出了一段简单的例子说明如何构建GTWR模型: ```python from gtwrap import GTWRModel # 初始化模型对象 model = GTWRModel() # 设置输入特征矩阵X和响应向量Y X = [[...], [...]] # 替换为实际坐标位置和其他协变量组成的列表 Y = [...] # 响应变量对应的观测值序列 # 训练模型 model.fit(X, Y) # 获取拟合后的参数估计 params = model.get_params() print(params) ``` 这段脚本首先创建了一个`GTWRModel`类实例化对象,接着指定了训练样本集合中的自变量部分(含经纬度信息),最后完成了整个学习阶段并通过打印语句展示出了各因子的重要性得分情况[^4]。 #### 应用案例分享 一个典型的应用领域是在城市规划方面——评估房价波动因素的影响程度差异。比如某项研究表明,在大城市中心区域附近交通便利性和教育资源质量往往成为决定住宅价格高低的关键要素;而在郊区则更看重自然环境优美与否等因素。通过建立相应的GWR模型可以帮助政府决策部门更加精准地制定土地开发政策和服务设施布局方案。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虾神说D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值