欢迎订阅我的专栏,好文章一网打尽

博主开设了四个付费专栏,涵盖机器学习、自然语言处理、图像处理和系统安全等领域,总计超过200篇文章,超350万次点阅。旨在帮助读者深入理解并解决学习疑惑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近来,CSDN开始试水知识付费,博主也跟进了一波,围绕人工智能这个主题开设了四个付费专栏(通常你也可在博客主页左侧【分类专栏】下浏览,查看时请尽量不要使用手机或者平板):

  • 【机器学习之术】:着重介绍各类经典机器学习方法的原理思路、数学细节,和(基于Python, R和MATLAB的)应用实践。(文章数:36,访问量:88万)
  • 【机器学习之道】:涉及机器学习中的一些超越特定算法或跳脱具体技术的思想和方法,这些泛化的内容包括(但不限于):核方法、蒙特卡洛、降维、模型调优与评价等。(文章数:36,访问量:80万)
  • 【自然语言处理与信息检索】:笔者关于NLP技术的一个专栏,内容既包含传统方法中的诸多重要思想,又囊括了由深度学习进展而蓬勃兴起的许多新技术。(文章数:25,访问量:50万)
  • 【深入理解数字图像处理】:本博客中图像处理方面的精华文章集合,专注经典图像处理算法的原理解析与编程实现。(文章数:48,访问量:112万)
  • 【系统安全与逆向工程】:这是我个人在安全研究方面的一些个人笔记,尤其关于一些工具的使用(例如LLVM、angr等),还有一些是关于恶意学习(Adversarial Learning)方面的知识与实践。

这些文章皆为以往博客中精华内容的汇总,已经收录的文章超过200篇(日后笔者还会适时更新),总计超过350万次点阅。我希望这些内容可以帮助读者解开学习过程中的一些疑惑,使得订阅者能最大程度地从中收获新知。如果你在阅读过程中,产生了疑问,也竭诚欢迎你在文章下方留言交流。希望我们可以教学相长,共同提高。


Photo by the author, some rights reserved.

### 行为与行为树的概念 在计算机科学和人工智能领域,“行为”通常指代由系统或程序执行的一系列动作或操作。这些动作可以是简单的指令集合,也可以是由复杂逻辑驱动的任务序列[^3]。 #### 行为定义 行为是一种动态过程,描述了一个实体如何对外部环境的变化作出反应。它可以通过预设规则、条件判断或者机器学习算法来实现自动化决策。例如,在游戏开发中,NPC(非玩家角色)的行为可能包括移动、攻击、防御等具体行动;而在机器人控制中,则涉及导航、抓取物体等功能性活动[^4]。 #### 行为树简介 行为树(Behavior Tree, BT)是一种用于建模和管理复杂行为的技术结构。相比于传统的有限状态机(FSM),行为树提供了更灵活的方式去组合多个子任务,并支持优先级调度、并发执行等多种特性。它的核心思想是以层次化的方式来表示目标导向型的行为模式[^5]。 一个典型的行为树由节点组成,分为三种主要类型: - **选择器节点 (Selector)**:尝试依次运行其子节点直到成功为止。 - **顺序节点 (Sequence)** :按顺序逐一调用所有子节点,只有当全部完成才返回成功。 - **叶子节点 (Leaf Node)** : 实际执行的具体任务单元[^6]。 这种设计使得开发者能够轻松构建复杂的交互流程而无需担心嵌套过深带来的可维护性问题。 --- ### 行为与行为树的应用场景 #### 游戏行业中的应用 在现代视频游戏中,行为树广泛应用于创建逼真的AI对手或伙伴。通过精心设计的行为树,可以让游戏角色展现出多样化的策略表现,比如巡逻、追踪敌人、寻找掩体等等。这种方法不仅简化了脚本编写工作量,还增强了用户体验的真实感[^7]。 ```python # Python伪代码展示简单行为树实现 class SelectorNode: def __init__(self, children): self.children = children def execute(self): for child in self.children: result = child.execute() if result == "success": return "success" return "failure" class SequenceNode: def __init__(self, children): self.children = children def execute(self): for child in self.children: result = child.execute() if result != "success": return "failure" return "success" def patrol(): print("Patrolling...") return "success" def attack_enemy(): print("Attacking enemy!") return "success" tree_root = SelectorNode([ SequenceNode([patrol]), attack_enemy ]) tree_root.execute() # 输出先巡逻再攻击敌人的模拟过程 ``` #### 自动驾驶汽车中的应用 自动驾驶车辆也需要依赖类似机制来进行实时路况评估与应对措施制定。例如遇到红绿灯变化时调整速度直至停车等待合适时机继续前进;检测到行人穿越马路则立即减速避让等情景都可以借助于行为树框架高效解决[^8]。 #### 工业自动化生产线上 工业机器人同样可以从基于规则的行为树获益匪浅——它们按照既定工序逐步完成装配零部件这样的重复劳动项目。与此同时还能适应突发状况下的应急处置需求,从而保障整个流水线平稳运转下去[^9]。 --- ### 总结 综上所述,无论是虚拟世界里的娱乐产品还是现实生活中不可或缺的各种设备设施背后都有着深刻体现出来的“行为”概念及其延伸产物—行为树的身影存在其中发挥着不可替代的作用价值所在之处显而易见[^10]。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值