关闭

第一篇 基于Kinect v2的跌到检测系统的概述

标签: kinect跌倒检测
1473人阅读 评论(4) 收藏 举报
分类:

第一篇 基于Kinect v2的跌到检测系统的概述

1.Kinect v2简介

Kinect v2的硬件结构:Kinect v2有三个摄像头,分别是RGB Camera(彩色相机)、Depth Sensor(深度相机或者称为红外相机)、IR Emitters(红外发射器),还有一个Microphone Array(麦克风阵列)。Kinect外观如图所示。

彩色相机用来获取摄像头视野范围里的高清彩色图像,红外发射器主动投射经调制的近红外光线,红外光线照到视野里的物体上就会发生反射,红外相机接收反射回来的红外线,采用TOF技术测量深度,计算光的时间差(通常是通过相位差来计算的),根据,可得物体的深度(即物体到深度相机的距离)。麦克风阵列采集Kinect周围的声音信息,结合微软的一些语音库,可以做语音识别等。


 

 

 

 

Kinect v26种基本的数据源。分别如下:

(1)RGB图像。即ColorFrameSource,分辨率1920*1080,相比一代的640*480,有大幅度的提高,帧率是30fps或者15fps,跟环境的亮度有关。

(2)红外图像。即InfraredFrameSource,分辨率512*424,帧率30fps

(3)深度图像。即DepthFrameSource,分辨率512*424,帧率30fps,范围是0.5~4.5m

(4)骨骼图像。即SkeletonFrameSource,帧率30fps,范围是0.5~4.5m,最多可以同时追踪6个人以及每人25个骨骼点,如图所示,而且有手势识别,相比一代的2个人的20个骨骼点,有明显的改进。

(5)人物索引二值图。即BodyIndexFrameSource,常用于把目标人体和背景区分开来,获取目标人的轮廓。

(6)声音源。即AudioSource,结合微软的语音识别库,可以用来做语音识别和判断声音的方向等。

 

 

 

2.基于Kinect v2的跌倒检测系统的主要功能和展示

(1)课题的研究背景、现状和意义简要分析(这部分只是为了介绍毕业设计完整性而加的内容,比较无聊,如果不感兴趣可以直接跳过)

 

背景:世界正在加速进入老龄化社会,老年人的日常生活安全和健康问题需要更加重视和更多关注。跌倒是老年人日常生活最危险的动作,而且时常发生。老年人跌倒可能会带来一些严重的后果和影响,比如骨折和头部重伤甚至变成植物人或者意外死亡;  

从中国目前的情况来看,独居的老人非常多,尤其是在农村,这样的老年人会承受更大的跌倒风险和更危险的后果,他们在意外跌倒后没有得到及时救助,这使得他们将处于极度危险的状态甚至可能因此在家身亡。

课题意义:研究显示,如果老年人在意外跌倒后,能够得到及时有效的救助,可以降低80%的死亡风险和26%的住院长期治疗风险;

目前没有一种足够让人信赖的跌倒检测系统,这也赋予了本课题的研究意义 ;  

避免老年人在跌倒后受到二次伤害,最大程度上减小损失;

寻求更加快捷、高效和准确的检测方法 。  

研究现状:主要分为三类:

基于穿戴式的人体跌倒检测系统;

基于环境布设的检测系统;

基于视觉技术的人体跌倒检测系统。

它们有需要随时携带、不舒适、检测准确率不高、泄露个人隐私等缺陷。

本文研究的基于Kinect的跌倒检测系统具有检测精度高、保护个人隐私、不受光照影响能夜间工作(使用红外光)等优点

 

(2)本检测系统主要功能有:

(1)启动。Kinect默认是关闭的状态,需要单击启动按钮,Kinect启动时间大概需要2s,系统成功启动,开始检测工作。如果没有接Kinect或者是其他原因导致启动失败,系统自动弹出错误提示框,用户需检查相关设备以及它们之间的连接情况。

(2)显示和实时深度图像处理。从主界面可以看到,有2picture控件和一个组合框控件,默认情况下,在2picture控件里面分别显示深度图和骨骼图,在组合框里面可以手动选择想要显示的画面,第一个picture控件可以在深度图、RGB图和IR图之间手动切换,第二个picture控件只能显示骨骼图,因为骨骼图和骨骼数据时本检测系统的核心。实时深度图像处理为借助opencv实时对深度图像做一些简单的处理,系统中含有:图像增强,滤波,获取边缘,二值化,腐蚀膨胀以及给深度图上色(不同深度用不同颜色表示,从HSV颜色空间转到RGB颜色空间)等处理。

(3)检测和通知。本系统最主要的功能,本系统是全自动跌倒检测系统。只要成功启动本系统,它会自动监测视野范围内所有人体(当然不能超过6个人,因为单个Kinect最多只能同时处理6个人的骨骼点)的活动情况,一旦检测到跌倒事件发生,系统就会自动切换到RGB画面,向外界发出警报求救,同时会记录跌倒事件发生的时间,并把重要信息通过邮件通知相关监护人,以及自动保存该时刻的深度图(bmp格式),骨骼图(bmp格式)以及所有骨骼点的三维坐标(txt格式)到指定目录下,目录的指定通过选择文件夹按钮来选择想要保存的目录,下同。

(4)图像保存。从主界面上可以看到,共有3个保存按钮,分别是保存深度图、保存骨骼图和多帧保存,还有一个帧数选择编辑框,可以手动选择保存的帧数。点击保存深度图就会自动保存指定帧数深度图到指定目录下,点击保存骨骼图就会自动保存指定帧数骨骼图和txt格式的骨骼坐标数据到指定目录下,点击多帧保存就相当于同时点击了保存深度图和保存骨骼图这2个按钮,并且会自动保存彩色图像和红外图像,保存完毕会弹出提示框。系统完全变成一个采集数据的软件,然后可以对获取到的各种图片进行处理和分析,可以实现各种各样的功能。

(5)输出。主界面的右边有一个编辑框,专门用来显示一些比较重要的输出信息,比如成功保存图像还是保存失败,检测到跌倒事件时,会提示有跌倒事件发生,把事件发生时间显示到窗口,并输出当前目标人体中心的下降速度以及两髋中心离地面的高度等信息。同时本系统也创建了一个控制台窗口,输出结果也会显示到控制台窗口,方便调试。而且本系统还会自动创建一个txt文件,自动写入本系统从启动到停止或者退出这段时间的所有重要的输出信息,可以作为一个备份。

(6)其他。添加联系人按钮,手动添加监护人的联系方式。停止按钮是强制关闭Kinect设备,并释放相关资源,但是并不退出检测系统,可以点击启动按钮再次启动检测系统。帮助按钮是对本系统的简单介绍和操作说明。退出按钮,完全退出本检测系统,点击会有温馨提示,是否确定完全退出,退出后将不再有跌倒检测功能。

 

 

系统展示:

1)系统界面展示

 

 

(2)系统工作画面展示

 

 

 

 


好了,本篇到此就结束了。本篇文章主要起到抛砖引玉的作用,对毕业设计的总体做了一个简单的概述,在接下来的几篇博客当中将全面详细介绍本检测系统是如何编程实现的,欢迎继续关注。


第一篇 基于Kinect v2的跌到检测系统的概述
http://blog.csdn.net/baolinq/article/details/52356863
 
第二篇 KinectV2结合opencv入门开发以及一些相关的学习资料
http://blog.csdn.net/baolinq/article/details/52356947
 
第三篇 KinectV2骨骼获取原理和获取方法及源代码
http://blog.csdn.net/baolinq/article/details/52373574
 

第四章 利用Kinect抠图和自动拍照程序

http://blog.csdn.net/baolinq/article/details/52388095

 
第五章 跌倒检测算法剖析
http://blog.csdn.net/baolinq/article/details/52400040
 
第六章 KinectV2结合MFC显示和处理图像数据(上)
http://blog.csdn.net/baolinq/article/details/52401116
 
第七章 KinectV2结合MFC显示和处理图像数据(下)
http://blog.csdn.net/baolinq/article/details/52422206

第八章  基于Kinectv2跌倒检测系统的总结

http://blog.csdn.net/baolinq/article/details/52440447


2
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:20546次
    • 积分:422
    • 等级:
    • 排名:千里之外
    • 原创:17篇
    • 转载:7篇
    • 译文:0篇
    • 评论:37条
    个人简介
    UESTC小硕一枚, 关注:计算机视觉、图像处理等领域。 邮箱:hu_nobuone@163.com 交流请发邮件,不怎么看博客私信^-^
    最新评论