增强学习(五)----- 时间差分学习(Q learning, Sarsa learning)

增强学习(五)----- 时间差分学习(Q learning, Sarsa learning)

接下来我们回顾一下动态规划算法(DP)和蒙特卡罗方法(MC)的特点,对于动态规划算法有如下特性:

  • 需要环境模型,即状态转移概率 Psa Psa
  • 状态值函数的估计是自举的(bootstrapping),即当前状态值函数的更新依赖于已知的其他状态值函数。

相对的,蒙特卡罗方法的特点则有:

  • 可以从经验中学习不需要环境模型
  • 状态值函数的估计是相互独立的
  • 只能用于episode tasks

而我们希望的算法是这样的:

  • 不需要环境模型
  • 它不局限于episode task,可以用于连续的任务

本文介绍的时间差分学习(Temporal-Difference learning, TD learning)正是具备了上述特性的算法,它结合了DP和MC,并兼具两种算法的优点。

TD Learing思想

在介绍TD learning之前,我们先引入如下简单的蒙特卡罗算法,我们称为constant- α α MC,它的状态值函数更新公式如下:

V(st)V(st)+α[RtV(st)](1) (1)V(st)←V(st)+α[Rt−V(st)]

其中 Rt Rt是每个episode结束后获得的实际累积回报, α α是学习率,这个式子的直观的理解就是 用实际累积回报 Rt Rt作为状态值函数 V(st) V(st)的估计值。具体做法是对每个episode,考察实验中 st st的实际累积回报 Rt Rt和当前估计 V(st) V(st)的偏差值,并用该偏差值乘以学习率来更新得到 V(St) V(St)的新估值。

现在我们将公式修改如下,把 Rt Rt换成 rt+1+γV(st+1) rt+1+γV(st+1),就得到了TD(0)的状态值函数更新公式:

V(st)V(st)+α[rt+1+γV(st+1)V(st)](2) (2)V(st)←V(st)+α[rt+1+γV(st+1)−V(st)]

为什么修改成这种形式呢,我们回忆一下状态值函数的定义:

Vπ(s)=Eπ[r(s|s,a)+γVπ(s)](3) (3)Vπ(s)=Eπ[r(s′|s,a)+γVπ(s′)]

容易发现这其实是根据(3)的形式,利用真实的立即回报 rt+1 rt+1和下个状态的值函数 V(st+1) V(st+1)来更新 V(st) V(st),这种就方式就称为时间差分(temporal difference)。由于我们没有状态转移概率,所以要利用多次实验来得到期望状态值函数估值。类似MC方法,在足够多的实验后,状态值函数的估计是能够收敛于真实值的。

那么MC和TD(0)的更新公式的有何不同呢?我们举个例子,假设有以下8个episode, 其中A-0表示经过状态A后获得了回报0:

index samples
episode 1 A-0, B-0
episode 2 B-1
episode 3 B-1
episode 4 B-1
episode 5 B-1
episode 6 B-1
episode 7 B-1
episode 8 B-0

首先我们使用constant- α α MC方法估计状态A的值函数,其结果是 V(A)=0 V(A)=0,这是因为状态A只在episode 1出现了一次,且其累计回报为0。

现在我们使用TD(0)的更新公式,简单起见取 λ=1 λ=1,我们可以得到 V(A)=0.75 V(A)=0.75。这个结果是如何计算的呢? 首先,状态B的值函数是容易求得的,B作为终止状态,获得回报1的概率是75%,因此 V(B)=0.75 V(B)=0.75。接着从数据中我们可以得到状态A转移到状态B的概率是100%并且获得的回报为0。根据公式(2)可以得到 V(A)V(A)+α[0+λV(B)V(A)] V(A)←V(A)+α[0+λV(B)−V(A)],可见在只有 V(A)=λV(B)=0.75 V(A)=λV(B)=0.75的时候,式(2)收敛。对这个例子,可以作图表示:
屏幕快照 2016-01-05 下午9.48.30.png-24.1kB
可见式(2)由于能够利用其它状态的估计值,其得到的结果更加合理,并且由于不需要等到任务结束就能更新估值,也就不再局限于episode task了。此外,实验表明TD(0)从收敛速度上也显著优于MC方法。

将式(2)作为状态值函数的估计公式后,前面文章中介绍的策略估计算法就变成了如下形式,这个算法称为TD prediction:

输入:待估计的策略 π π
任意初始化所有 V(s) V(s),( e.g.,V(s)=0,ss+ e.g.,V(s)=0,∀s∈s+)
Repeat(对所有episode):
  初始化状态  s s
  Repeat(对每步状态转移):
     a a←策略 π π下状态 s s采取的动作
    采取动作 a a,观察回报 r r,和下一个状态 s s′
     V(s)V(s)+α[r+λV(s)V(s)] V(s)←V(s)+α[r+λV(s′)−V(s)]
     ss s←s′
  Until  st st is terminal
 Until 所有 V(s) V(s)收敛
输出 Vπ(s) Vπ(s)

Sarsa算法

现在我们利用TD prediction组成新的强化学习算法,用到决策/控制问题中。在这里,强化学习算法可以分为在策略(on-policy)离策略(off-policy)两类。首先要介绍的sarsa算法属于on-policy算法。
与前面DP方法稍微有些区别的是,sarsa算法估计的是动作值函数(Q函数)而非状态值函数。也就是说,我们估计的是策略 π π下,任意状态 s s上所有可执行的动作a的动作值函数 Qπ(s,a) Qπ(s,a),Q函数同样可以利用TD Prediction算法估计。如下就是一个状态-动作对序列的片段及相应的回报值。
屏幕快照 2016-01-06 下午9.28.07.png-17.3kB
给出sarsa的动作值函数更新公式如下:

Q(st,at)Q(st,at)+α[rt+1+λQ(st+1,at+1)Q(st,at)](4) (4)Q(st,at)←Q(st,at)+α[rt+1+λQ(st+1,at+1)−Q(st,at)]

可见式(4)与式(2)的形式基本一致。需要注意的是,对于每个非终止的状态 st st,在到达下个状态 st+1 st+1后,都可以利用上述公式更新 Q(st,At) Q(st,At),而如果 st st是终止状态,则要令 Q(st+1=0,at+1) Q(st+1=0,at+1)。由于动作值函数的每次更新都与 (st,at,rt+1,st+1,at+1) (st,at,rt+1,st+1,at+1)相关,因此算法被命名为sarsa算法。sarsa算法的完整流程图如下:
屏幕快照 2016-01-06 下午9.52.57.png-61kB
算法最终得到所有状态-动作对的Q函数,并根据Q函数输出最优策略 π π

Q-learning

在sarsa算法中,选择动作时遵循的策略更新动作值函数时遵循的策略是相同的,即 ϵgreedy ϵ−greedy的策略,而在接下来介绍的Q-learning中,动作值函数更新则不同于选取动作时遵循的策略,这种方式称为离策略(Off-Policy)。Q-learning的动作值函数更新公式如下:

Q(st,at)Q(st,at)+α[rt+1+λmaxaQ(st+1,a)Q(st,at)](5) (5)Q(st,at)←Q(st,at)+α[rt+1+λmaxaQ(st+1,a)−Q(st,at)]

可以看到,Q-learning与sarsa算法最大的不同在于 更新Q值的时候,直接使用了最大的 Q(st+1,a) Q(st+1,a)值——相当于采用了 Q(st+1,a) Q(st+1,a)值最大的动作,并且与当前执行的策略,即选取动作 at at时采用的策略无关。 Off-Policy方式简化了证明算法分析和收敛性证明的难度,使得它的收敛性很早就得到了证明。Q-learning的完整流程图如下:
屏幕快照 2016-01-09 上午12.35.01.png-140.7kB

小结

本篇介绍了TD方法思想和TD(0),Q(0),Sarsa(0)算法。TD方法结合了蒙特卡罗方法和动态规划的优点,能够应用于无模型、持续进行的任务,并拥有优秀的性能,因而得到了很好的发展,其中Q-learning更是成为了强化学习中应用最广泛的方法。在下一篇中,我们将引入资格迹(Eligibility Traces)提高算法性能,结合Eligibility Traces后,我们可以得到 Q(λ),Sarsa(λ) Q(λ),Sarsa(λ)等算法

参考资料

[1] R.Sutton et al. Reinforcement learning: An introduction, 1998

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值