1.向量的内积 即 向量的的数量积 定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。 2.向量的外积 即 向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
如果两向量内积为零,说明两向量垂直;外积为0,说明两向量平行
向量内积a.b代表两个向量对应坐标值相乘后相加,得到的是一个数,标量。
数值上等于两向量长度积乘以夹角的余弦 几何上的应用:可以求两向量夹角;
一个向量a和一个单位向量e的内积的几何意义是a在e方向的投影向量。
一个向量对自己内积开方后是该向量长度
向量外积a×b得到的是一个向量,一个行列式,以三维向量为例,等于 |i j k | |a1 a2 a3| |b1 b2 b3| 长度数值上等于两向量长度积乘以夹角的正弦,方向用右手螺旋定则确定,物理上经常应用于求电磁力 几何上的应用:两向量外积等于以两向量为邻边的平行四边形面积,方向为两向量所在平面的法线方向;