向量的内积与外积

本文详细介绍了向量的内积和外积。内积,也称为数量积,涉及向量的长度和夹角,其几何意义包括投影和夹角公式。外积,或称为向量积,结果是一个向量,表示与原向量平面垂直的法向量,其模长代表平行四边形的面积。
摘要由CSDN通过智能技术生成

向量的内积与外积

向量的内积

已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2

设a、b为非零向量,则
①设e是单位向量,且e与a的夹角为θ,则e·a=a·e=|a||e|cosθ
②a⊥b=a·b=0
③当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b| ;a·a=|a|^2 = a ^2或|a|=√a·a
④|a·b|≤|a|·|b|,当且仅当a与b共线时,即a∥b时等号成立
⑤cosθ=a·b╱(|a||b|)(θ为向量a.b的夹角)
⑥零向量与任意向量的数量积为0。

平面向量内积的几何意义:

①一个向量在另一个向量方向上的投影
设θ是a、b的夹角,则|b|cosθ叫做向量b在向量a的方向上的投影,|a|cosθ叫做向量a在向量b方向上的投 影。
②a·b的几何意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积
★注意:投影和两向量的数量积都是数量,不是向量。
③数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

向量的外积

把向量外积定义为:
|a ×b| = |a|·|b|·s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值