00 序言
线性代数的数值运算:帮助你顺利应用这些工具。
几何直观:帮助你判断出解决特定问题需要什么样的工具,感受到它们有为什么有用,以及如何解读最终结果。
01 向量究竟是什么?
看待向量的三种观点:物理专业学生视角——向量是空间的一个箭头,由长度和方向决定。
计算机专业学生视角——向量是有序的数字列表,2维。
数学家——向量可以是任何东西,只要保证两个向量相加以及数字与向量相乘有意义即可。
二维空间,向量一般竖着写,然后用方括号括起来,上面表示沿着X轴走了多远,下面表示沿着y轴走了多远。每一对数与一个向量一一对应。
三维空间,向量对应三元数组。
向量的加法,向量的移动,可以看做数轴上加法的拓展。
向量的数乘,对向量进行拉伸或者压缩,称为缩放。
02 线性组合、张成的空间与基
将每个坐标看做标量,表示如何拉伸或者压缩一个向量。
一对特殊的向量:i帽,j帽,xy坐标系的基向量。
不同的基向量,不同的坐标系。每当我们用数字描述向量时,它都依赖于我们正在使用的基。
两个数乘向量的和被称为这两个向量的线性组合。(如果固定其中一个标量,让另一个标量自由变化,所产生的向量的终点会描出一条直线)
所有可以表示为给定向量线性组合的向量的集合,被称为给定向量张成的空间(span)。
向量与点的关系:可以用向量的终点来表示向量,替换箭头表示。 单个向量看作箭头,多个向量看作点。
两个三维向量张成的空间是过原点的平面。
如果第三个三维向量不与它们共面,当第三个三维向量缩放时,它将前两个向量张成的平面沿着它的方向来回移动,从而扫过整个空间。
对于第三个向量已经落在前两个向量张成的空间当中,或者两个向量恰好共线的情况,即一组向量中至少有一个是多余的,没有对张成空间做出任何贡献,你有多个向量,并且可以移除其中一个而不减小张成的空间,当这种情况发生时,我们称它们是“线性相关”的。另一种表述:其中一个向量,可以表示为其他向量的线性组合,因为这个向量已经落在其他向量张成的空间之中。另一方面,如果所有向量都给张成的空间增添了新的维度,它们就被称为是“线性无关”的。
基的严格定义:向量空间的一组
基是
张成该空间的一个
线性无关向量集。(思考一下为什么这个定义合乎情理)