Learning Entity and Relation Embeddings for Knowledge Graph Completion

本文介绍了知识图谱补全的研究,重点探讨了TransE、TransH模型及其局限性,提出TransR和Cluster-based TransR(CTransR)方法,通过实体和关系的独立空间映射提升表示能力。实验表明,CTransR在链接预测和知识图谱补全任务中表现出优越性能。
摘要由CSDN通过智能技术生成

我们这样来训练embeddings,首先把 实体空间 映射到对应的 关系空间,然后在 已经映射的实体间 建立翻译。
实验中,我们通过这样的任务评估模型,link预测,三元组分类,关系事实抽取。

知识图谱补全的目标是预测实体间的关系,在有监督的已有知识图谱下。
知识图谱补全类似社交网络分析中的link预测,不同点是知识图谱补全中,我们不仅要预测关系存在,还要预测关系类型。
最近比较流行把知识图谱embedding到连续向量空间。

相关模型

TransE和TransH

TransE是h+r≈t,表示h+r的最近的邻居是t,打分公式就是
TransE
TransE在1对1的关系应用很好,但是N对1,1对N,N对N关系中有问题。针对这个问题,TransH提出了,r就在超平面TransH上,h和t映射到超平面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值