最优化--等式约束最优性条件

所谓的最优性条件就是最优解的性质。

我们通过最优性条件的研究,能够对于优化的步骤,以及迭代求解时的结束条件有很大帮助。

最优化问题常见的有无约束优化,等式约束优化,不等式约束优化。这里用两篇blog分别讨论等式约束优化与不等式约束最优化的最优性条件。


我们首先讨论等式约束的情况下,其最优解满足怎样的性质。


 三维空间:

以下以三维空间为特例,看看最优解有哪些性质。

 


如上图,X为局部最优解,那么其必在S1与S2的交线D(及可行域)上,并且目标函数与约束函数的 梯度 共面。如果不共面,那么f(x)梯度向可行域D上的投影不为零。于是沿着这个投影移动,可使得目标函数下降,也就不是最优解。

根据共面的条件,我们可以推出:      

                       

也就是三维空间的最优性条件。

 

等式约束一阶必要条件:

上述是三维空间上的特殊情况,对于等式约束的一般情况,我们可以通过微积分,来得到关于导函数的一些性质。下面直接写出其完整性质。

一阶必要条件:


上式为必要条件,不是充分条件。

 


具体解法:

我们可以定义如下的n+l元函数:


称为lagrange函数。也就是把目标函数与约束函数写在一起求解,并用向量的形式来表示。

上式分别对x与lamda求导为零求解后,即为可能极值点。

不过上述的点可能是鞍点,也可能是极值点,具体判断要用到如下的二阶充分条件。

*补充:我们使上面的拉格朗日乘子为0,可以求得可能极值点。不过如果采用序列迭代法,经证明,上面的函数没有最小值,也就是使用序列迭代法得不到解。

 


二阶充分条件:

在满足一阶必要条件的前提下,我们现在要判断所得的可能极值点到底是不是极值点,就要用到二阶充分判断条件:

若 函数关于x的Hesse矩阵在约束超曲面的切平面上正定,则x就是严格局部极小点。

 

Hesse矩阵的知识:

在数学中,海森矩阵(Hessian matrix或Hessian)是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,此函数如下:


如果f所有的二阶导数都存在,那么f的海森矩阵即:


其中 ,即


 

小结:等式最优化问题,把约束条件与目标函数写在一起,称为langrang函数,对X,lamda求导取零后,在通过二阶的hesse矩阵是否正定来进一步判断。


  • 10
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
教学目的要求 最优化方法属于专业普及课程,是从所有可能方案中选择最合理的方案以达到最优目标的学科,是随着计算机的普遍应用而发展起来的,它已广泛应用于各个领域。随着最优化方法理论的完善及计算机技术中各种算法的发展,最优化方法也广泛被应用于计算机算法的设计和优化。本门课程旨在讲授最优化的基本理论和方法,要求通过本课程的学习,具有应用最优化方法解决一些实际问题的初步技能,并为以后的学习和工作做必要的准备。 本课程的任务是讨论求解线性规划、无约束非线性规划、约束非线性规划、多目标规划、整数规划的基本原理与一般方法,并学习MATLAB等工具软件的应用,使学生掌握最优化方法的基本概念、基本原理和基本方法,初步学会应用最优化方法解决简单的实际优化问题,培养解决实际问题的能力。 预修课程 微积分、线性代数 教材 教材: 《最优化理论与方法》,作者袁亚湘、孙文瑜,科学出版社,1997; 课程资料。 主要内容 第一章 最优化方法的由来及其基本原理 . 最优化方法的产生与发展,最优化方法的基本原理 第二章 线性规划 .线性规划问题,单纯形法 第三章 二次规划 . 二次规划算法及应用 第四章 无约束非线性规划 . 牛顿、拟牛顿方法,下降方向及线性搜索 第五章 有约束非线性规划 . 有约束非线性规划算法,等式约束和不等式约束的处理 第六章 凸优化 . 凸问题,凸约束,凸优化算法及实例 第七章 全局优化 . 局部与全局最优解,多起始、模拟退火、遗传算法 第八章 MATLAB优化工具箱 . MATLAB优化工具软件的使用 第九章 多目标优化 . Pareto最优性,多目标优化算法 第十章 整数规划 . 混合整数规划算法概述,整数规划复杂性,搜索 第十一章 最优化方法在计算机算法中的应用 . 最优化方法在机器学习等领域的应用。 基本要求: 1、掌握最优化方法的基本概念、相关的优化原理和最常用的算法,注意方法处理的技巧及其与计算机的结合,提高计算机应用能力; 2、通过例子,学习使用各种优化方法解决实际中遇到的简单优化问题,提高分析、解决实际问题的能力; 参考文献 主要参考书: 《最优化理论与方法》,作者陈宝林,清华大学出版社,1989; Nonlinear Programming (Second Edition),Dimitri P. Bertsekas, Athena Scientific Belmont, 1999.
### 回答1: 在分批调度问题中,等式约束可以通过将其转化为不等式约束来处理,例如将等式约束 x1 + x2 + ... + xn = c 转化为 x1 + x2 + ... + xn <= c 和 x1 + x2 + ... + xn >= c 两个不等式约束。这样就可以将等式约束转化为标准的线性规划形式,方便进行求解。 ### 回答2: 分批调度问题是一种经典的优化问题,其中等式约束是一种重要的限制条件。在处理等式约束时,需要将其转化为数学模型,以便进行求解。 首先,我们需要明确等式约束的含义。在分批调度问题中,等式约束通常表示资源的平衡性。例如,某一批次的生产总量必须等于该批次所需资源的总量。这意味着我们需要为每个批次分配适当的资源,以确保等式约束得到满足。 为了处理等式约束,我们可以采用多种方法。一种常用的方法是引入松弛变量或拉格朗日乘子。通过引入这些额外的变量或乘子,我们可以将等式约束转化为不等式约束。这样,我们就可以使用常规的优化方法来解决这个问题。 另一种处理等式约束的方法是使用线性规划技术。线性规划可以处理包含等式约束的优化问题。通过将等式约束转化为线性不等式约束,线性规划方法可以找到满足约束条件的最优解。 此外,还可以考虑使用基于遗传算法、禁忌搜索等启发式搜索方法来处理等式约束。这些方法可以通过迭代搜索解空间来寻找满足等式约束的最优解。 总之,在分批调度问题中,等式约束是必须要考虑的重要因素。我们可以通过引入松弛变量、拉格朗日乘子、线性规划方法或启发式搜索方法来处理等式约束。这些方法可以帮助我们找到满足约束条件的最优解。 ### 回答3: 在分批调度问题中,等式约束可以通过一些方法来处理。 首先,我们可以使用线性规划的方法来处理等式约束。通过引入松弛变量和目标函数,将等式约束转化为不等式约束。然后,利用线性规划的算法求解这个问题,以达到满足等式约束的目的。 其次,另一种处理等式约束的方法是使用拉格朗日乘子法。将等式约束加入原始目标函数中,并引入拉格朗日乘子,将原始问题转化为一个带有约束条件的优化问题。通过最大化或最小化目标函数来求解问题,并在求解过程中逐步调整拉格朗日乘子的取值,以满足等式约束条件。 另外,还可以使用目标函数方法来处理等式约束。将等式约束直接代入目标函数中,将原始问题转化为一个只包含一些变量的新函数。然后,通过优化这个新函数来求解问题,并满足等式约束。 此外,对于一些特殊情况下的等式约束,如资源约束,可以采用优先级规则来处理。根据资源的紧缺程度和优先级确定任务的调度顺序,以保证等式约束得到满足。 总的来说,分批调度问题中的等式约束可以通过线性规划方法、拉格朗日乘子法、目标函数方法或优先级规则等来处理,以保证问题的解满足等式约束的要求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值