ReLu(Rectified Linear Units)激活函数总结

### 关于ReLU激活函数的研究论文 ReLURectified Linear Unit)是一种广泛应用于神经网络中的激活函数,因其简单性和高效性而备受关注。最早的ReLU概念可以追溯到Nair和Hinton的工作,在他们的研究中首次提出了ReLU作为一种有效的非线性变换方法[^2]。 #### ReLU 的原始出版物 ReLU的最初定义可以在以下论文中找到: - **"Rectifier Nonlinearities Improve Neural Network Acoustic Models"** by Xavier Glorot, Antoine Bordes, and Yoshua Bengio (2011)[^6]。这篇论文探讨了不同类型的非线性激活函数对语音识别模型的影响,并指出ReLU相比传统的Sigmoid或Tanh函数具有更好的性能。 此外,另一篇重要的文章是: - **"Deep Sparse Rectifier Neural Networks"** by Vinod Nair and Geoffrey Hinton (2010)[^7]。这篇文章详细介绍了ReLU的设计理念及其在深层神经网络中的应用效果。 #### ReLU 变体的发展 除了标准的ReLU之外,还有多种变体被提出以解决其潜在缺陷,例如梯度消失问题。以下是几个常见的ReLU变体及相关文献: - **Leaky ReLU**: 提出了允许少量负输入传递的小正梯度机制,防止训练过程中梯度完全消亡的情况发生。 - 文献推荐:"Understanding the difficulty of training deep feedforward neural networks" by Xavier Glorot et al.[^8] - **Parametric ReLU (PReLu)**: 这种自适应版本允许学习参数控制斜率值,从而提高灵活性。 - 推荐阅读:“Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification” by Kaiming He et al.[^9] - **Exponential Linear Units (ELUs)** 和其他改进型激活函数也逐渐成为研究热点之一。 #### 经典CNN架构中的应用实例 在许多经典的卷积神经网络结构设计里,比如GoogLeNet以及ResNet等都采用了基于ReLU或者它的变形形式作为主要激活单元[^5]。这些成功的案例进一步验证了该类激活方式的有效性与普适价值。 ```python import torch.nn as nn class SimpleNN(nn.Module): def __init__(self): super(SimpleNN, self).__init__() self.fc = nn.Linear(100, 50) self.relu = nn.ReLU() def forward(self, x): x = self.fc(x) x = self.relu(x) # 使用ReLU激活函数处理数据流 return x ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值