关闭

deep learning的使用观点

为保证作者原意,不做翻译cited from: Adrian RosebrockGet off the deep learning bandwagon and get some perspectiveDisclaimer: This post is a bit cynical in tone. In all honesty, I support deep learning research, I ...
阅读(546) 评论(0)

bundle adjustment算法学习

今天学习了稀疏的光束平差法,基于上一篇博文Levenberg–Marquardt算法学习,这里对学习内容做一个理论梳理。本次内容包括:BA简介BA迭代步长的数学推导稀疏BA迭代步长的算法求解过程1.BA简介   摄像机在静态环境中移动,得到不同时刻拍摄的多幅图像。假设这些图像是同一刚性物体的投影,则可由图像特征对应关系估计出摄像机的运动参数。在计算机视觉中 ,这一过程称为运动分析或由运动重建物体结...
阅读(2407) 评论(0)

Levenberg–Marquardt算法学习

本次是对Levenberg–Marquardt的学习总结,是为之后看懂sparse bundle ajdustment打基础。这篇笔记包含如下内容:回顾高斯牛顿算法,引入LM算法惩罚因子的计算(迭代步子的计算)完整的算法流程及代码样例1.      回顾高斯牛顿,引入LM算法 根据之前的博文:Gauss-Newton算法学习  假设我们研究如下形式的非线性最小二乘问题:  r(x)为某个问题的残差...
阅读(3507) 评论(2)

The computation of homography, essential and fundamental matrix

本次打算梳理下最基本的几个矩阵之间的关系以及计算,总结大体内容:1.  单应性矩阵的基本概念什么是单应性矩阵?单应性变换包含什么样的射影组合(projective transformation)?单应性关系的前提条件?单应性与极几何的联系?2. 单应性矩阵的计算 本质矩阵和基础矩阵的性质,上一篇博文有详细介绍,所以此处只讲计算方法了。3. 基础矩阵的计算及计算前提条件4.本质矩阵的计算5.给定本质...
阅读(1308) 评论(0)

Relative Orientation 与fundamental essential matrix

由于《Hartley, Zisserman ...》书太厚,啃不动。所以最近回头看youtube上的德国鬼子视频, 补习机器视觉最基础的知识。所以本次博文,没有算法,没有代码,纯粹的定义和识记。 老外视频课程地址:https://www.youtube.com/playlist?list=PLgnQpQtFTOGRsi5vzy9PiQpNWHjq-bKN1  本次总结涵盖视频:Photogramm...
阅读(914) 评论(0)

opencv相机标定

代码是我几个月前,不知道哪里下载的,原始版权不在我,也没法给出处。   opencv做相机标定经常碰到问题,就是超大图片无法找到角点。我做了小修改,就是把图片先缩小,等找到角点了,再放大到原来比例。   输入参数:方格的数量,注意是内圈角点数量 boardsize方格的物理 尺寸,单位毫米   squaresizeCMakeLists:cmake_minimum_required(VERSION ...
阅读(1058) 评论(0)

Gauss-Newton算法学习

Gauss-Newton算法是解决非线性最优问题的常见算法之一,最近研读DPPTAM开源项目代码,又碰到了,索性深入看下。本次讲解内容如下:基本数学名词识记牛顿法推导、算法步骤、计算实例高斯牛顿法推导(如何从牛顿法派生)、算法步骤、编程实例高斯牛顿法优劣总结一、基本概念定义1.非线性方程定义及最优化方法简述   指因变量与自变量之间的关系不是线性的关系,比如平方关系、对数关系、指数关系、三角函数关...
阅读(9956) 评论(5)

RGBD点云纹理生成

假设你有一坨带颜色点云,非常想要贴纹理的效果,但又觉得PCL那一堆API很恶心,那么就用meshlab吧!本文将给出主要步骤:【大部分来自youtube视频】...
阅读(2733) 评论(0)

ONI文件生成与读取

之前一直不知道如何实时保存RGB-D数据,每次都写入PCD文件不现实,对于30fps的,每秒就有30个PCD文件,硬盘速度绝逼跟不上。保存color和depth视频吧,总觉得不方便,而且depth压缩与解压缩会有精度损失。后来老外提醒我:/OpenNI2/Source/Tools/NiViewer    press s to record oni file感觉很方便,于是自己参考了《openni ...
阅读(2031) 评论(3)

ubuntu14.04 PCL1.8 OPENNI2.0 OPENCV3.0安装小结

最近入手NvidiaTegra 1 开发板,ARM架构的,做室内三维重建用。今天就讲讲的PCL 1.8+ OPENCV3.1 + OPENNI2.0在ubuntu14.04 上的安装与编译。   更新ubuntu的armhf源,修改source.list,中科大的快!deb http://mirrors.ustc.edu.cn/ubuntu-ports/ trusty main restricte...
阅读(7748) 评论(5)

SIFT特征--方向赋值与关键点描述

一个SIFT关键点拥有三个信息:位置,尺度和方向。前面已经介绍了如何精确定位关键点的位置,通过尺度不变性求极值点,可以使其具有缩放不变的性质。现在来谈谈为特征点指定方向参数,使提取的特征对图像旋转具有不变性,从而实现匹配时图像的旋转无关性。最后,再介绍该用什么样的描述符来表达sift特征。 一、关键点方向分配  SIFT特征的一个关键的特性是旋转不变性,实现旋转不变的基本思想是采用“相对”的概念。...
阅读(5639) 评论(0)

sift特征--关键点搜索与定位

前面介绍了如何生成高斯图像金字塔,并计算了每组图像的高斯差分图像。现在介绍如何进行关键点搜索与定位(都在灰度图上搞的)。一、极值点计算   关键点是由DOG空间的局部极值点组成的。为了寻找DoG函数的极值点,每一个像素点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。每一幅高斯差分图像中的一个像素点,要和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保...
阅读(3971) 评论(2)

SIFT特征--构造DOG尺度空间

最近打算做全景图拼接,尝试过hugin和opencv stitch,一直没有很满意的效果。打算深入研究,恰好,在github看到清华一小哥的项目,故逐步分析他的代码。    sift特征是全景拼接的第一步,相当基础,但sift特征提取与匹配从0开始实现起来又挺折腾的,故花点时间整理下。    清华小哥的博客:http://ppwwyyxx.com/2013/SIFT-and-Image-Stich...
阅读(3743) 评论(0)

PCL 室内三维重建II

本次博文介绍固定点拼接点云,kinect拍摄两幅画面,二者之间旋转10度,运行环境vs2012 pcl1.7.2使用方法:1.采样一致性初始配准算法SAC-IA,粗略估计初始变换矩阵2.ICP算法,精确配准原始点云(拼接前,隔着10度)正视图俯视图代码:#include #include #include #include #include #include #include #in...
阅读(5266) 评论(11)

PCL 室内三维重建

手头有三个prime sensor摄像头,分别固定在不同角度,打算根据RGBD信息,将三个摄像头的点云数据拼接起来。设备限制+能力不足,一直没有把point cloud library 1.8环境搭建起来,因此无法实时读取点云信息。此外,笔记本电脑USB芯片总线中断协议限制,亦无法同时使用三个摄像头。在如此坑爹的境地,分享下我是怎么搞三维重建的。。。。一、点云数据获取1.采用openni2.0 采...
阅读(6429) 评论(5)
53条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:640340次
    • 积分:4300
    • 等级:
    • 排名:第7769名
    • 原创:49篇
    • 转载:4篇
    • 译文:0篇
    • 评论:530条
    最新评论