阅读小结:Improved Techniques for training GANS

原创 2016年09月02日 13:40:27

github地址:https://github.com/openai/improved-gan/


What:

提出了对于GANs新的结构和训练过程。主要focus在两个应用:半监督学习 和  更好的图像产生。

对于G,不要求一个和test data和像的模型,也不要求不使用label。

实验中,D在半监督分类任务上达到了state-of-art的结果。

G在MNIST样本人已经无法分辨,CIFAR10的样本人也有21.3%的概率认错。


How:

训练GANs 其实是一个找纳什均衡的问题。但这个均衡很难找到,cost函数不是凸的。

所以引入了一些策略来鼓励收敛。

1. Feature matching

为G设定一个新的目标函数。

替代原先的最大化D的目标,新的目标是用G去产生数据来匹配真实数据。 D还是和原来一样。

f(x)  代表D中的一个中间层,新的目标函数为  f(G(x))  和  f(z)  的二范数最小。


2.minibatch discrimination

孤立的看一个个sample,容易使G收敛到一个点(这就是我之前跑实验常遇到的问题啊!!!)

之前DCGAN里面用batch normal其实也是为了让D不孤立的去看sample。

所以作者提出了使用minibatch discrimination,意思是我们不孤立的看sample,加入sample之间的信息,来写D。(G的objective不变,还是最大化D)

公式的主要意思是,除了D中原来的f(x)外,加入一个信息,就是minibatch 中 f(x)之间的距离  (在bp的时候会有作用)

(作者还提到在训练分类器时,feature matching会表现得更好)


3.Historical averaging

加入了一个正则项。


4.One-side label smoothing

把gt的label  从1,0变成0.9,0.1

generate还是 1和 0


5.VBN

batch normalize 依赖minibatch里面的其他数据。这会有影响。所以提出了一个 virtual batch normalise

每次sample的时候另外再sample一个batch 根据这个batch做norm  (这只使用在G中)






版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Improved Techniques for Training GANs

Improved Techniques for Training GANspaper codeIntroduce对抗网络主要有两个应用:半监督学习和生成视觉相似图片。对抗网络的目的要训练生成网络G(...

GAN:生成式对抗网络介绍和其优缺点以及研究现状

本博文是转载自一篇博文,介绍GAN(Generative Adversarial Networks)即生成式对抗网络的原理以及GAN的优缺点的分析和GAN网络研究发展现状...

GANs学习系列(2):GANs最新进展二

reference:http://blog.csdn.net/solomon1558/article/details/52338052 文献整理   ...

GANs系列

GANs系列 最近在调研自动生成文本方面的内容,这里我将参考了一些资料并对这些知识点进行了整理总结,初步总结如下: 目录GANs DCGAN WGAN GANs 生成对抗网络是一种生成模型(G...

从传统GAN到improved WGAN

最近做了一个从传统GAN到improved WGAN的报告,把PPT贴上来吧,有需要的小伙伴可以参考一下。论文主要涉及到17年的三篇文章: Arjovsky M, Bottou L. Towards ...

解读GAN及其 2016 年度进展

作者:程程 链接:https://zhuanlan.zhihu.com/p/25000523 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 摘要 本文主要包括两方...

NIPS 2016 主题概览

NIPS 2016最全盘点:主题详解、前沿论文及下载资源 《吴恩达 NIPS 2016 演讲现场直击:如何使用深度学习开发人工智能应用?》 「nuts and bolts of building ...

20170131 | 阅读 | 个人向

NIPS 2016最全盘点:主题详解、前沿论文及下载资源

深度学习入门 ---稀疏自编码器

在学习稀疏自编码器之前,需要读者有BP神经网络的基础 1. 为什么要用稀疏自编码器  对于没有带类别标签的数据,由于为其增加类别标记是一个非常麻烦的过程,因此我们希望机器能够自己学习到样本中的一些重要...
  • jiede1
  • jiede1
  • 2017年08月06日 12:53
  • 184

关于稀疏自编码器的自己的理解

今天看了一天的稀疏自编码器,也跑了UFLDL教程 http://ufldl.stanford.edu/wiki/index.php/Exercise:Sparse_Autoencoder 上的ex...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:阅读小结:Improved Techniques for training GANS
举报原因:
原因补充:

(最多只允许输入30个字)