机器学习之分类性能度量指标 : ROC曲线、AUC值、正确率、召回率

本文深入探讨了在分类任务中评估模型性能的常用指标,包括ROC曲线、AUC值、正确率和召回率。通过混淆矩阵解释了分类错误的类型,并以二分类问题为例,详细阐述了ROC曲线的绘制过程和AUC值的计算,强调了ROC曲线在评估分类器性能中的重要作用。
摘要由CSDN通过智能技术生成
北京 | 高性能计算之GPU CUDA课程11月24-26日 3天密集学习 快速带你晋级 阅读全文 >


在分类任务中,人们总是喜欢基于错误率来衡量分类器任务的成功程度。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错误掩盖了样例如何被分错的事实。在机器学习中,有一个普遍适用的称为混淆矩阵(confusion matrix)(https://en.wikipedia.org/wiki/Confusion_matrix)的工具,它可以帮助人们更好地了解分类中的错误。


比如有这样一个在房子周围可能发现的动物类型的预测,这个预测的三类问题的混淆矩阵如下表所示:



一个三类问题的混淆矩阵


利用混淆矩阵可以充分理解分类中的错误了。如果混淆矩阵中的非对角线元素均为0,就会得到一个近乎完美的分类器。


在接下来的讨论中,将以经典的二分类问题为例,对于多分类类比推断。


二分类问题在机器学习中是一个很常见的问题,经常会用到。ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under the Curve) 值常被用来评价一个二值分类器 (binary classifier)(https://en.wikipedia.org/wiki/Binary_classification) 的优劣。之前做医学图像计算机辅助肺结节检测时,在评定模型预测结果时,就用到了ROC和AUC,这里简单介绍一下它们的特点,以及更为深入地,讨论如何作出ROC曲线图和计算AUC值。


1、医学图像识别二分类问题


针对一个二分类问题,我们将实例分成正类(positive)和负类(negative)两种。


例如:在肺结节计算机辅助识别这一问题上,一幅肺部CT图像中有肺结节被认为是阳性(positive),没有肺结节被认为是阴性(negative)。对于部分有肺结节的示意图如下:



常见肺结节示意图


所以在实际检测时,就会有如下四种情况:


(1) 真阳性(True Positive,TP):检测有结节,且实际有结节;正确肯定的匹配数目;


(2) 假阳性(False Positive,FP):检测有结节,但实际无结节;误报,给出的匹配是不正确的;


(3) 真阴性(True Negative,TN):检测无结节,且实际无结节;正确拒绝的非匹配数目;


(4) 假阴性(False Negative,FN):检测无结节,但实际有结节;漏报,没有正确找到的匹配的数目。


详细图解(原创,转载请标明出处)如下:




更多参数详细信息及其意义请参考 Wikipedia -> [Confusion_matrix](https://en.wikipedia.org/wiki/Sensitivity_and_specificity#Confusion_matrix).


上图中涉及到很多相关概念及参数,详细请见Wiki上的定义及其混淆矩阵(https://en.wikipedia.org/wiki/Sensitivity_and_specificity#Confusion_matrix),这里整理肺结节识别中的几个主要参数指标如下:


  • 正确率(Precision):



  • 真阳性率(True Positive Rate,TPR),灵敏度(Sensitivity),召回率(Recall):



  • 真阴性率(True Negative Rate,TNR),特异度(Speci

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值