最小二乘法理论、推导、算法
author@jason_ql
http://blog.csdn.net/lql0716
1、引言
- 求最小二乘的实例:
假定 x ,
y 有如下数值:
y | 1.00 | 0.90 | 0.90 | 0.81 | 0.60 | 0.56 | 0.35
x | 3.60 | 3.70 | 3.80 | 3.90 | 4.00 | 4.10 | 4.20
解:将这些数值画图可以看出接近一条直线,故用 y=ax+b 表示,故将上面的数值代入表达式有:
由于直线只有两个未知数
a
,
误差的平方即二乘方,故成为最小二乘法。
2、最小二乘法理论(使得平方和最小)
2.1 数学理论推导
- 线性方程组
该方程组可能无解,即任何一组 x1,x2,...,xs (这里为系数)都可能使得
不等于零。所以找到一组 x1,x2,...,xs 使得(2)式最小,称这样的解为最小二乘解,这种问题就叫最小二乘方问题。
对于(1)式,我们可以用矩阵来表示,
自变量矩阵
A
:
函数值 B :
系数 X :
函数值 Y :
故(2)式等价于:
也就是说,最小二乘法就是找 x1,x2,...,xs 使得 Y 与 B 的距离最短。
对于(4)式 Y ,可以写为如下形式:
其中 αi 为对应的列向量,由 αi 生成的子空间为 L(α1,α2,...,αs) ,那么 Y 就是 L(α1,α2,...,αs) 中的向量,故最小二乘法问题可叙述成:
找 X 使得(2)式最小,就是在 L(α1,α2,...,αs) 中找一向量 Y 使得
B 到它的距离比到子空间 L(α1,α2,...,αs) 中其它向量的距离都短。
设 Y=AX=x1α1+x2α2+...+xsαs ,则
必须垂直于子空间 L(α1,α2,...,αs) ,故有
由向量内积的定义可知:
向量的内积:
α=(a1,a2,...,an) ,
β=(b1,b2,...,bn) ,
则 α 和 β 的内积为: (α,β)=a1b1+a2b2+...+anbn
由(6)式可得:
即:
从而有:
其中 |A′A|≠0
2.2 常见形式
2.2.1 理论
根据2.1节,可以得出以下形式( s+1≤n ):
这里是常见的方程表示形式
aj
为系数,
b
为常数项,
根据(2.2.1)式,设:
那么:
2.2.2 算法
- 算法步骤
1、输入 X , y
2、求 a=(X′X)−1X′y
参考
《高等代数》北大三版
干货分享
- 机器学习、深度学习、计算机视觉、自然语言处理及应用案例——干货分享(持续更新……)
http://blog.csdn.net/lql0716/article/details/70479493